实用多元高斯分布

本文简单概括多元高斯分布的定义、性质与简单应用技术,内容会持续更新。读者也可参考此文

多元高斯分布定义

s s s 维随机向量 x = [ x 1 , x 2 , … , x s ] T x=[x_{1},x_{2},\dots,x_{s}]^{T} x=[x1,x2,,xs]T 的概率密度函数为:
f ( x 1 , x 2 , … , x s ) = 1 ( 2 π ) s / 2 ∣ Σ ∣ 1 / 2 exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) f(x_{1},x_{2},\dots,x_{s}) = \frac{1}{(2\pi)^{s/2}|\Sigma|^{1/2}}\exp\left( -\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu) \right) f(x1,x2,,xs)=(2π)s/2Σ1/21exp(21(xμ)TΣ1(xμ))
其中 x = ( x 1 , x 2 , … , x s ) T x = (x_{1},x_{2},\dots,x_{s})^{T} x=(x1,x2,,xs)T μ \mu μ s s s 维非随机向量, Σ \Sigma Σ s s s 阶正定阵。则称 x x x 服从 s s s 元高斯(正态)分布,简单记为 x ∼ N s ( μ , Σ ) x\sim N_{s}(\mu,\Sigma) xNs(μ,Σ)

  • μ \mu μ X X X 的均值向量: μ = E [ x ] \mu = \mathbb{E}[x] μ=E[x]
  • Σ \Sigma Σ X X X 的协方差矩阵: Σ = c o v [ x ] = E [ ( x − μ ) ( x − μ ) T ] \Sigma =\mathrm{cov}[x] = \mathbb{E}[(x-\mu)(x-\mu)^{T}] Σ=cov[x]=E[(xμ)(xμ)T]
  • Σ − 1 \Sigma^{-1} Σ1 被定义为精度矩阵(Precision Matrix or Concentration Matrix)。

指数函数括号内的表达式被称为两个向量之间的马氏距离(Mahalanobis distance)。为了更深入理解这个值,对 Σ \Sigma Σ进行特征值分解: Σ = U Λ U T \Sigma =U\Lambda U^{T} Σ=UΛUT,其中 U U U是由特征向量组成对标准正交阵, U T U = I U^{T}U=I UTU=I Λ \Lambda Λ 是由特征值组成的对角阵。
Σ − 1 = U − T Λ − 1 U − 1 = U Λ − 1 U T = ∑ i = 1 s 1 λ i u i u i T \Sigma^{-1} = U^{-T}\Lambda^{-1}U^{-1}=U\Lambda^{-1}U^{T}=\sum_{i=1}^{s}\frac{1}{\lambda_{i}}u_{i}u_{i}^{T} Σ1=UTΛ1U1=UΛ1UT=i=1sλi1uiuiT 其中 u i u_{i} ui U U U 中的列向量。如此,这个马氏距离可以被重写为:
( x − μ ) T Σ − 1 ( x − μ ) = ( x − μ ) T ( ∑ i = 1 s 1 λ i u i u i T ) ( x − μ ) = ∑ i = 1 s 1 λ i ( x − μ ) T u i u i T ( x − μ ) = ∑ i = 1 s y i 2 λ i \begin{aligned}(x-\mu)^{T}\Sigma^{-1}(x-\mu) &= (x-\mu)^{T}\left( \sum_{i=1}^{s}\frac{1}{\lambda_{i}}u_{i}u_{i}^{T} \right) (x-\mu) \\ &= \sum_{i=1}^{s}\frac{1}{\lambda_{i}}(x-\mu)^{T}u_{i}u_{i}^{T}(x-\mu) \\ &= \sum_{i=1}^{s}\frac{y_{i}^{2}}{\lambda_{i}} \end{aligned} (xμ)TΣ1(xμ)=(xμ)T(i=1sλi1uiuiT)(xμ)=i=1sλi1(xμ)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值