【bandgap】无运放带隙基准电路

无运放带隙基准电路

参考:无运放cmos带隙基准
在这里插入图片描述
在这里插入图片描述

启动电路

因为带隙电路中存在简并偏置点,当电源上电时,有可能出现所有支路都传输零电流的情况,使整个电路不能正常工作。因此,需要启动电路让电路在上电时摆脱简并偏置点。

图2电路中的M9~M14和Q5组成启动电路。刚接通电源时,节点⑥为低电平。M9导通,给节点⑥充电。当节点⑥电压升到一定高度时,整个带隙基准电路开始正常工作,同时导致(6)式成立,从而在电路正常工作时M9处于截止状态。启动电路不再对电路产生影响,完成电路的启动。

基准电压产生电路

图2中,M1,M2,M5,M6宽长比的比例为2∶1∶1∶2。M3,M4,M7宽长比的比例为2∶1∶2。Q1,Q3~Q5是一样的三极管,Q2是与Q1一样的16个三极管的并联。

M1~M5,Q1,Q2形成PTAT电流产生电路。M5还起反馈作用。M6,M7,Q3支路为M3,M4提供偏置电压,同时起负反馈作用,使节点①电压等于节点②电压。Q1和Q3是一样的三极管,M7和M3的栅极相连,使V⑤=V③。假设节点③电压不等于节点⑤电压,如果V⑤>V③,由VBE1<VBE3得到I1<I5,而由VGS3>VGS7得到I1>I5,与前面得到的结论相矛盾,所以,V⑤=V③,I1=I5,VGS1=VGS6,从而得到节点①电压等于节点②电压。由电流镜和各个晶体管的尺寸比值,可得出IPTAT=I1=I2+I3=I4=I5=I6。因为M3和M4传输同样的电流,漏极电压又相等,它们接在同一个栅极电压上,所以,V④=V③。

M6M7所在反馈支路

这两个支路反馈回来的电压量V2均与-V成正比,所以是负反馈。这两路负反馈使电路比普通结构有更大的环路增益,从而提高了环路的抗干扰能力和电路的电源抑制比,减小了常规结构中沟道调制效应对基准源精度的影响。

<think>好的,我现在需要向用户介绍源简并差分放大电路如何提高带宽。首先,我得回忆一下源简并差分放大电路的基本结构和工作原理。源简并通常指的是在晶体管的源极串联一个电阻或者电感,这样可以引入负反馈,从而影响电路的性能参数,比如增益、带宽、线性度等。 用户的问题是关于如何提高带宽的,所以需要重点分析源简并技术对带宽的影响机制。带宽通常与电路的极点位置有关,极点频率越高,带宽越宽。在放大电路中,主极点往往由输入或输出节点的RC时间常数决定。源简并可能会影响这些节点的时间常数,或者通过负反馈改变电路的频率响应。 首先,我需要明确源简并差分放大电路的结构。差分对管的源极通过一个电阻(或电感)连接到地,形成源极负反馈。这个电阻会引入本地反馈,降低跨导,但可能扩展带宽,因为增益和带宽的乘积可能保持相对稳定,或者反馈改变了极点位置。 接下来,带宽的提高可能与极点分裂有关。负反馈有时会将主极点推向更高的频率,同时产生次极点,从而扩展带宽。不过需要具体分析小信号模型,推导传递函数,找到极点变化的情况。 然后,可能需要考虑密勒效应。在差分放大器中,密勒电容可能会限制带宽,源简并可能通过降低有效跨导来减少密勒效应的影响,从而提升带宽。 另外,电感作为源简并元件时,可能会引入零点,补偿高频响应,从而扩展带宽。例如,在共源极放大器中,源极电感可以产生一个零点,抵消某个极点的影响,提升高频性能。但用户的问题是否包含电感的情况呢?题目中提到的是“源简并”,通常可能指电阻,但有时也会用电感,特别是在高频应用中。需要明确这一点,或者两种情况都考虑。 接下来,我需要构建小信号模型,推导传递函数。假设是电阻源简并的差分对,每个晶体管的源极接电阻Rs。对于差分信号,两个源极电阻的中点相当于虚地,所以每个管的源极看到的电阻是2Rs吗?或者差分模式下,源极的电压变化会被抵消,导致源极电阻的影响不同? 可能更准确的是,在差分信号作用下,两个晶体管的源极电流变化方向相反,因此源极节点电压的变化会被抵消,导致每个管子的源极有效电阻为2Rs。这会增加每个管子的源极负反馈,从而降低跨导,但同时可能影响频率响应。 跨导gm会降低,因为源极电阻引入了负反馈,有效跨导变为gm/(1 + gm*Rs)。这会影响增益,但增益带宽积可能保持不变,所以如果增益降低,带宽可能增加。不过实际电路中,可能还有其他极点的影响,所以需要具体分析。 例如,原来的主极点可能在输出节点,其频率为1/(2π*Rout*Cout)。如果源简并降低了增益,但Rout可能变化,或者主极点的位置可能改变。或者,源简并可能引入额外的极点,但由于负反馈,主极点频率被推高,从而带宽增加。 此外,源简并可能会影响输入节点的电容,比如密勒电容。原来的输入电容可能由Cgs和密勒效应放大的Cgd构成。如果跨导降低,密勒电容的影响减小,输入极点频率提高,从而扩展带宽。 总结来说,源简并通过引入负反馈,降低跨导,可能减少密勒效应,改变极点位置,从而提高带宽。但需要数学推导来验证这一点。 现在需要具体推导传递函数。假设差分对中的每个晶体管的小信号模型,考虑源极电阻Rs。对于半边电路,可以简化为一个共源放大器,源极接电阻Rs到地。此时的小信号模型中,跨导为gm,源极电阻Rs引入负反馈。 根据小信号分析,输出电流io = gm*vgs,而vgs = vg - vs。vs = io*Rs,所以vgs = vg - io*Rs。代入得io = gm*(vg - io*Rs),解得io = gm*vg / (1 + gm*Rs)。所以有效跨导Gm = gm / (1 + gm*Rs),这显示跨导降低了。 对于电压增益Av = Gm * Rd,其中Rd是负载电阻。因此,增益降低为原来的1/(1 + gm*Rs)。如果增益降低,而原来的增益带宽积是固定的,比如GBW = Av * BW,那么如果Av减小,BW应该增加。但实际情况可能更复杂,因为电路中的极点位置可能变化。 原来的主极点可能由输入或输出节点决定。假设输出极点为主极点,频率为1/(2π*Rd*Cout)。如果源简并不改变Rd和Cout,那么主极点不变,此时增益降低,带宽不变,GBW降低。这可能与预期不符。因此,可能原来的主极点位于输入节点,此时源简并可能改变输入极点。 输入极点由输入电阻和输入电容决定。例如,密勒效应导致输入电容Cin = Cgs + Cgd*(1 + Av)。如果Av降低,Cin减小,输入极点频率提高,从而带宽增加。 所以,源简并通过降低电压增益,减小输入端的密勒电容,使输入极点频率提高,进而扩展整体带宽。这种情况下,虽然增益下降,但带宽增加,增益带宽积可能保持不变或略有变化。 此外,源简并电阻还可能引入一个零点,比如在源极节点,电阻和晶体管的寄生电容可能形成零点。例如,源极节点的电容Cs(如Cgs)与Rs形成的零点频率为1/(2π*Rs*Cs)。如果这个零点位于高频,可能有助于提升带宽,但需要具体分析。 不过,在差分对中,源极电阻可能被差分信号抵消,所以上述分析可能需要调整。或者,在单边模型中,源极电阻的影响如之前所述。 总结,源简并差分放大电路通过引入源极负反馈电阻,降低跨导,减少密勒效应带来的输入电容,从而提高输入极点频率,扩展带宽。同时,可能引入零点来改善高频响应。不过具体效果需根据电路参数和结构详细分析。 现在需要将这些步骤整理成用户易懂的中文解释,结构清晰,分点说明,并确保LaTeX公式正确应用。</think>源简并差分放大电路通过在晶体管源极引入负反馈元件(如电阻或电感),可有效提高带宽。以下为详细分析: --- ### 1. **基本结构** 源简并差分放大电路在差分对管的源极串联电阻$R_s$(或电感),形成本地负反馈: $$V_{s1} = I_{s1} \cdot R_s, \quad V_{s2} = I_{s2} \cdot R_s$$ 差分信号作用下,源极电位变化被部分抵消,等效源极电阻为$2R_s$。 --- ### 2. **负反馈对跨导的影响** 源极电阻引入负反馈,降低有效跨导$G_m$: $$G_m = \frac{g_m}{1 + g_m \cdot R_s}$$ 其中$g_m$为晶体管本征跨导。跨导降低导致**电压增益下降**: $$A_v = G_m \cdot R_d = \frac{g_m R_d}{1 + g_m R_s}$$ --- ### 3. **带宽提升机制** #### (1)**密勒电容减小** - 原输入电容受密勒效应影响:$C_{\text{in}} \approx C_{gd}(1 + A_v)$ - 源简并降低$A_v$,从而减小$C_{\text{in}}$,**提高输入极点频率**: $$f_{\text{in}} = \frac{1}{2\pi R_{\text{in}} C_{\text{in}}}$$ #### (2)**主极点频率提升** - 若主极点在输出节点,原频率为: $$f_{\text{out}} = \frac{1}{2\pi R_d C_{\text{out}}}$$ - 源简并可能通过降低增益,间接减少密勒电容对输出节点的影响,推高$f_{\text{out}}$。 #### (3)**零点引入(电感简并时)** - 若使用电感$L_s$,源极阻抗$Z_s = j\omega L_s$,引入零点: $$f_z = \frac{1}{2\pi} \cdot \frac{g_m}{C_{gs} + C_{gd}}$$ - 零点可抵消高频极点,扩展带宽。 --- ### 4. **设计权衡** - **增益-带宽积(GBW)**:增益降低与带宽提升可能使GBW保持近似恒定。 - **线性度改善**:负反馈同时提升线性度,但需平衡$R_s$取值。 --- ### 5. **实例分析** 假设原始差分放大器带宽$f_{\text{BW}} = 100\ \text{MHz}$,加入$R_s$后: - 增益下降至$\frac{1}{1 + g_m R_s}$倍 - 输入电容减小,带宽提升至$f_{\text{BW}}' = f_{\text{BW}} \cdot (1 + g_m R_s)$ --- ### 6. **总结** 源简并技术通过负反馈降低跨导,减小密勒电容,调整极点位置,从而在牺牲增益的前提下显著提高带宽。实际设计中需通过小信号模型仿真优化$R_s$或$L_s$值,以平衡增益、带宽和线性度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值