分光光度法基本原理与应用

本文详细阐述了分光光度法的基本概念,包括透光度、吸光度和朗伯-比尔定律,以及在实际工作中的应用策略,如标准比较法、标准曲线法等。同时讨论了测量过程中可能出现的误差源,如溶液浓度、干扰物质、仪器噪声等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍分光光度法基本原理与应用。

分光光度法是分光光度计采用的方法,在医疗检测仪器,实验室测量仪器中经常使用。本文简要分析其原理,并给出实际工作过程中如何应用及应用过程中可能的误差来源。

1.基本概念

设一平行单色光垂直照射某一宽度为l的液体,入射光强度为I_{o},透射光强度为I_{t},液体浓度为c,如下图所示。

1)透光度

设入射光强度为I_{o},透射光强度为I_{t}I_{t}I_{o}之比为透光度(T)。

T=\frac{I_{t}}{I_{o}}

2)吸光度

透光度的负对数为吸光度(A)。

A=-lg(T)=-lg(\frac{I_{t}}{I_{o}})=lg(\frac{I_{o}}{I_{t}})

3)朗伯-比尔定律(lambert-beer law)

描述物质对某一波长光吸收的强弱与吸光物质的浓度及其液层厚度间的关系。
A=K\cdot l\cdot c

其中,

a)l为光程长度 (cm)

b)K为吸光物质的吸收系数或摩尔吸收系数

c)A为吸光度,又称光密度“O.D”

d)c为物质的浓度

朗伯-比尔定律使用条件

a)入射光为平行单色光垂直照射

b)吸光物质为均匀非散射体系

c)吸光质点之间无相互作用

d)入射光与物质之间的作用仅限于光吸收过程,无荧光和光化学现象发生

实际使用过程中造成测量值和理论偏离因素:

a)非单色光引起的偏离,即入射光光谱太宽

b)非平行入射光引起的偏离

c)介质不均匀引起的偏离

d)溶液浓度过高引起的偏离,一般情况下,待测物质溶液浓度的吸光度在0.1~0.8之间最符合光吸收定律,此时检测线性好,读数误差小

e)化学反应(如水解、解离)引起的偏离

分光光度法正是使用朗伯-比尔定律来求取被测液体浓度。

2.分光光度法的应用

实际工作中,通常用比色皿(宽度l固定)盛放溶液,用某一波长的单色光垂直照射比色皿,通过光电采集透射光强度。由于入射光强度固定,可以容易求得吸光度(A)。测量待测物质的浓度有以下几种方法:

1)标准比较法(standard comparative method)

在相同条件下,配制标准溶液和待测样品溶液,测定它们的吸光度。比较两者的吸光度,即可求出待测样品溶液的浓度。即:

c_{t}=\frac{A_{t}}{A_{s}}\cdot c_{s}

2)标准曲线法(standard curve method)

配制一系列浓度由小到大的标准溶液,测出其吸光度。以各标准溶液的浓度为横坐标相应的吸光度为纵坐标,在方格坐标纸上绘出标准曲线,如下图。在相同条件下测出待测样品的吸光度后,从标准曲线上可以直接查出其浓度。此法通常适用于大批样品的分析。

3)标准系数法(standard coefficient method)

此法较上述两法简便。将多次测定标准溶液的吸光度算出平均值后,按下式求出标准系数:
标准系数 = 标准液浓度 / 标准液平均吸光度
将用同样实验条件测出的待测溶液的吸光度代入下式即可求出待测溶液的浓度:
待测溶液浓度=待测溶液吸光度×标准系数

4)吸光系数法(absorption coefficient method)

吸光系数计算浓度的公式为:
c=\frac{A}{K}
当浓度为1mol/L的溶液厚度为1cm时,K=A。在同样实验条件下测得的待测溶液的吸光度,
可用上式计算出浓度。

3.分光光度法的误差

一般采用分光光度法造成误差的原因主要有以下几种:

1)溶液浓度

待测物质溶液的浓度过高或过低都会偏离朗伯-比尔定律,影响检测的准确度。一般情况下,待测物质溶液浓度的吸光度在0.1~0.8之间最符合光吸收定律,此时检测线性好,读数误差小。如吸光度不在此范围,可适当稀释或浓缩比色溶液再进行测定。

2)干扰物质

某些物质能干扰待测物质显色反应过程,或其本身具有与待测物质相同或相似的光吸收特性。这些物质存在于待测溶液中时,会使溶液测定值与待测物质实际浓度不相符合,因而产生误差。

3)反射光与散射光

待测溶液与参比溶液的光折射率不同时,会引起发射损失的不同。待测溶液浑浊,入射光通过时会产生散射效应。这些非吸收作用都会产生测量误差。

4)仪器噪声

分光光度计的噪声主要由光源强度、电子器件和光电管所产生的。仪器噪声过大,可严重影响测定的灵敏度和准确度。

5)吸收池

吸收池的不匹配、透光面不平行或定位不准确等,都会使其透光率产生差异,使测定结果产生误差。

总结,本文介绍了分光光度法基本原理与应用。

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值