一文快速阅读 LLaMA3.2-Vision 模型的结构

随着 Meta 放出了 LLaMA3.2 系列模型,LLaMA 系列也是正式迎来了官方版本的多模态大模型 LLaMA3.2-Vision [1]。那我们就在本期内容中聊一聊 LLaMA3.2-Vision 模型的结构,希望对大家有所帮助。

相关代码位于 [2]

结论

先说结论,LLaMA3.2 的整体结构与 Flamingo 相似,均是采用交叉注意力的方式进行模态融合。而 projector 也仅仅由一个线性层组成。

LLaMA3.2-Vision-11B 的 ViT 参数量仅有 800M,projector 的参数量为 31M,而 LLM 部分的参数量来到了 9775 M。

具体结构

Vision Encoder

imgVisionModel 定义

先来看 Vision Encoder 部分。尽管 Vision Encoder 整体上还是 ViT 架构,但却比一般的 ViT 多出了很多东西,比如 gated_positional_embeddingpre_tile_positional_embeddingpost_tile_positional_embedding。此外,最与众不同的一点便是,Vision Encoder 中包含两部分编码器,分别为 transformerglobal_transformer

在推理时,图片会首先经过 processor 进行处理。在对其进行 reshape 后,便会对其进行 PatchEmbedding 操作。但此时并不会直接叠加位置编码,而是再次 reshape,之后再叠加 pre_tile_positional_embedding。随后 reshape 回到叠加 pre_tile_positional_embedding 前的形状,并叠加 class_token。在这之后,再次 reshape 并叠加 gated_positional_embedding。完成这一切过后便是对于输入的 pad 过程。在准备好对于输入图片比例的 attention_mask 后,输入会通过 transformer 得到第一份输出。然后将这份输出 reshape 并叠加 post_tile_positional_embedding,随后经过 global_transformer 得到其最终输出与中间状态。在将最终输出与中间状态叠加后,Vision Encoder 完成了其输出。

接下来,我们来看三个 positional_embedding 之间的区别。代码是这样定义的:

self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(config)

self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)

可以看到,三个 positional_embedding 之间存在明显差别。其中 pre_tile_positional_embeddingpost_tile_positional_embedding 主要是对于图像的宽高比进行编码,而 gated_positional_embedding 更像是传统意义上的位置编码。

最后是 transformerglobal_transformer 的不同。global_transformer 启用了 gated 参数,这会使得 MllamaVisionEncoderLayer 的行为不同。具体来讲,在启用 gated 时,MllamaVisionEncoderLayer 会有两个可学习的参数,分别用于控制 attention 层的输出 scale 和 ffn 层的输出 scale。

LLM

然后是 LLM 部分。LLM 部分与 Flamingo 中所使用的 LLM 相似,即部分层使用 CrossAttention 而非 SelfAttention。此处不过多赘述 CrossAttention 的原理了。此处附上一张 Flamingo 的示意图。但与 Flamingo 不同的点在于,LLaMA3.2-Vision 并非把所有层都用 CrossAttention 替代了 SelfAttention

imgflamingo 架构

在推理时,CrossAttention 层会接受来自 projector 的输出,并依此得到 K 和 V,接受原本输入得到 Q 进行注意力的计算。

完整推理过程

在看完了 Vision Encoder 和 LLM 的细节后,我们来整体看一下 LLaMA3.2-Vision 的推理过程吧。

首先,图片会通过 Vision Encoder 得到输出。这些输出会经过投影层转换维度后,作为 LLM 中的 CrossAttention 层的 cross_attention_states。随后,文本部分会经过 tokenizer 直接输入给 LLM,并在 cross_attention_states 的作用下完成推理,实现文本模态的输出。值得注意的一点是,这一过程中并没有发生把图片 embedding 转换为文本 embedding 并拼接,作为 LLM 输出的过程。(即 LLaVA 类似推理过程)

1: https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
2:https://github.com/huggingface/transformers/blob/main/src/transformers/models/mllama/modeling_mllama.py

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### 关于 Llamaindex 和 Llama3.2-Vision 技术文档及相关资源 #### Llamaindex 技术概述 Llamaindex 是一个用于简化大型语言模型部署和服务的框架。该工具允许开发者轻松集成各种预训练的语言模型,从而加速应用程序开发过程并提高效率[^1]。 对于希望深入了解 Llamaindex 的用户来说,官方 GitHub 页面提供了详尽的技术文档和支持材料。这些资料不仅涵盖了安装指南、配置选项等内容,还包括多个实际案例研究以及最佳实践建议,帮助使用者更好地理解和应用这一强大平台。 #### Llama3.2-Vision 模型介绍 关于 Llama3.2-Vision 版本的具体细节,在现有信息中提到此版本专注于提升图像识别能力及其在多种视觉理解任务上的表现力,能够达到与其他先进基础模型相匹敌的效果[^3]。然而,针对这个特定版本更深入的技术参数或架构说明并未直接提及;通常这类高级特性会记录在其发布的论文或者官方博客文章里。 为了获取最权威的第一手资讯,推荐访问 Meta 官方网站查询有关 Llama 系列产品的最新动态和技术白皮书。此外,社区论坛也是不可忽视的知识宝库——这里聚集了许多经验丰富的从业者分享心得体验,可以作为补充学习途径之一。 #### 获取与使用教程 要下载和设置 Llama3.2-Vision 模型,可以根据类似先前版本的操作流程来进行操作: ```bash llama model download --source meta --model-id Llama3.2-Vision ``` 这段命令假设存在一个名为 `meta` 的源,并且目标模型 ID 已经被正确指定为 `Llama3.2-Vision`。请注意具体语法可能会有所变化,因此强烈建议参照最新的官方指导手册来执行上述步骤。 一旦成功安装完毕之后,则可以通过阅读随附的例子程序了解如何调用 API 接口完成诸如图片分类之类的典型应用场景。同时,《赋能知识图谱形成:利用 BERTopic、DataMapPlot 和 Mistral AI 揭示见解(教程含完整代码)》这篇文章虽然主要讨论的是其他主题,但也可能包含了部分通用性的机器学习项目实施技巧,值得借鉴参考[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值