彻底搞懂CNN、RNN、GAN、transformer!

01引言

本文旨在以通俗的方式介绍深度学习关键架构,涵盖卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)、transformer及编码器-解码器模型。

img

02
卷积神经网络

CNN,一种人工神经网络,擅长分析图像和视频等网格数据。可视其为多层过滤器,对图像进行处理,提取关键特征,进行预测。比如,识别手写数字,CNN通过逐层应用滤波器,从图像中提取从边缘、线条到形状、数字的复杂特征,层层深入。

在这里插入图片描述

CNN的主要层型包括卷积层、池化层及全连接层。

卷积层:通过滑动滤波器在图像上处理,计算滤波器与像素点积,形成新的特征图,突出图像特定模式。使用多种滤波器多次处理,生成多组特征图,全面捕捉图像特征。

池化层:通过下采样特征图,池化层既保留了关键特征又缩减了数据空间维度,从而减少计算负担并预防过拟合。最大值池化是最常用的类型,它选取像素邻域内的最大值进行操作。

全连接层:与常规神经网络层相似,这些层将一层所有神经元与下一层每个神经元连接。卷积层和池化层输出经展平后,输入全连接层进行计算,以实现如图像数字识别等预测任务。

CNN是一种神经网络,专为处理结构化数据如图像设计。其运作机制是利用滤波器或核函数逐步挖掘图像的复杂特征,接着通过池化层降低维度,避免过拟合,最终通过全连接层输出预测结果。

03循环神经网络

循环神经网络(RNN)是一种神经网络,专用于处理时间序列、语音和自然语言等序列数据。如同传送带逐个传递元素,RNN能够“记住”前一个元素,以此预测下一个元素。例如,计算机预测单词序列中的下一个单词时,RNN逐词分析并利用前词信息进行预测。RNN的核心是递归连接,它使信息得以在时间步间传递,让神经元“记住”先前状态。

在这里插入图片描述

RNN由三部分构成:输入端、递归单元和输出端。

输入层:接收序列各时刻的输入,如单字。递归层:利用递归连接“记忆”前一时信息,处理输入层数据。该层神经元互连,并接收到当前输入。输出层:基于递归层信息,预测序列中下一个最可能出现的单词。

RNN作为一种神经网络,擅长处理序列数据。它逐个处理信息,通过递归结构保留先前元素的记忆,适用于语言翻译、语音识别和时间序列预测等多种任务。

04生成对抗网络架构

GAN,即生成对抗网络,通过两个神经网络(生成器和判别器)的对抗训练,模拟艺术家创作与鉴赏的过程,旨在生成逼真的图像、音频和文本等数据。生成器构造新样本,判别器评估其真实性。二者相互博弈,生成器力求生成更逼真的数据,判别器则不断提高识别伪造样本的能力。

GAN 的两个主要组成部分如下:

生成器网络负责从随机噪声生成新样本,如图像或句子。它通过不断优化以减少生成样本与真实数据间的差异。判别器网络则评估样本的真伪,输出概率以判断样本真假。两者在GAN中相互竞争,生成器力求欺骗判别器,判别器则努力提升分辨能力。此对抗训练持续进行,直至生成器能生成难以与真实数据区分的高质量样本。

GAN,即生成对抗网络,是一种深度学习框架,由生成器和判别器两个神经网络构成,用于生成逼真的新数据。生成器负责生成新样本,判别器则鉴定样本的真伪。双方在对抗中训练,生成器力求生成更逼真的样本,判别器不断提升识别能力。GAN已广泛应用于图像、视频、音乐及文本等领域。

05Transformers架构

Transformers,一种在2017年开创性论文“Attention Is All You Need”中提出的神经网络架构,现广泛用于自然语言处理的NLP任务,涵盖翻译、文本分类和问答系统等领域。

将Transformers视为一种高级语言模型,它能将文本拆解为更细微的单元,分析其内在联系,进而生成连贯、自然的回答。

在这里插入图片描述

Transformers由层层递进模块构成。每层内置两大核心部件:

自注意力机制:此机制能解析输入文本各部分间的联系,通过为每个词赋予权重,体现其与语境的关联度。模型聚焦关键词汇,弱化非相关词的重要性。前馈神经网络:基于自注意力机制输出,多层感知机学习词间复杂关联。

Transformers核心创新为自注意机制,大幅提升长序列文本处理效率,省去昂贵递归或卷积操作,显著增强计算效能,高效应对NLP挑战。

简言之,Transformers是专为自然语言处理打造的强大神经网络,通过分割文本并利用自注意机制分析片段间关联,以生成流畅连贯的回答。

06encoder-decoder架构
编码器-解码器结构在NLP领域广受欢迎,尤其适用于序列到序列任务,如机器翻译,旨在将源语言文本准确转化为目标语言文本。

将编码器-解码器架构比作一位翻译,他一边听人说外语,一边即时将其转换成听者的母语。

在这里插入图片描述

该架构由两个主要部分组成:

编码器:接受输入序列(源文本)并转换成简明表示(context vector或context embedding),该表示综合了语法、语义和上下文信息。编码器可能为RNN或Transformer,视任务而定。解码器:基于编码器的输出,逐步构建输出序列(目标文本)。通常为RNN或Transformer,类似于编码器,依据上下文和先前单词预测序列中的每个元素。

训练时,解码器获取真实目标序列,旨在预测序列中的后续单词;而推理时,解码器依据已生成的文本内容,预测下一个单词。

编码器-解码器架构是NLP领域广受欢迎的方法,尤其擅长序列到序列任务,如翻译。它包括编码器和解码器两部分,前者处理输入序列生成向量,后者根据向量生成输出序列,从而实现语言间的文本翻译。

07总结

本文聚焦于介绍CNN、RNN、GAN、Transformers等神经网络架构,涵盖图像与自然语言处理领域,掌握这些结构将助力我们在具体任务中实现更精准的决策。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>好的,用户之前已经询问了Transformer模型,现在要了解CNNRNN。我需要比较这两种模型,同时可能用户希望了解它们的区别以及各自的优缺点。 首先,用户可能对深度学习的基础模型感兴趣,或者在做项目时需要选择适合的模型。他们可能已经知道Transformer,现在想补充CNNRNN的知识,以便全面理解不同架构的应用场景。 用户身份可能是学生、研究人员或开发者。他们需要清晰的对比,结构化的信息,以及实际应用的例子。需要确保回答准确,涵盖核心概念、结构、数学表达、优缺点和应用,同时避免过于技术化的术语,但保持专业。 要注意用户之前的回答格式,使用标题、列表、公式等。需要将CNNRNN分开介绍,再比较它们的差异,可能还要提到与Transformer的关系,因为之前的问题提到了Transformer。 需要检查数学公式的正确性,比如CNN的卷积操作、RNN的循环公式,确保使用正确的LaTeX格式。同时要提供实际例子,比如CNN用于图像识别,RNN用于时间序列,帮助用户理解应用场景。 可能用户还想知道为什么Transformer在某些任务上取代了RNN,但需要保持回答集中在CNNRNN本身,不过可以稍微提及它们的局限性,比如RNN的长依赖问题,CNN的平移不变性等。 最后,总结部分要强调两者的适用领域,以及它们在现代模型中的融合使用,比如CNN用于特征提取,RNN处理序列,或者结合Transformer的结构。</think>以下是关于CNN(卷积神经网络)和RNN(循环神经网络)的对比解析,包含核心原理、数学表达和应用场景: --- ### **一、CNN(卷积神经网络)** #### 1. **核心设计思想** - **局部感知**:通过卷积核提取局部特征(如图像边缘、纹理) - **权重共享**:同一卷积核扫描全图,减少参数量 - **平移不变性**:物体位置变化不影响识别结果 #### 2. **数学建模** - **卷积操作**(离散2D卷积): $$ (I * K)_{i,j} = \sum_{m}\sum_{n} I_{i+m,j+n} \cdot K_{m,n} $$ 其中$I$为输入矩阵,$K$为卷积核 - **池化层**(如最大池化): $$ \text{MaxPool}(x)_{i,j} = \max(x_{2i:2i+1, 2j:2j+1}) $$ #### 3. **典型结构** ``` 输入 → [卷积层 + ReLU]×N → 池化层 → 全连接层 → 输出 ``` #### 4. **优势** - 高效处理**网格数据**(图像、视频) - 自动学习层次化特征(低级→高级) - 参数效率高(相比全连接网络) #### 5. **应用场景** - 图像分类(ResNet, VGG) - 目标检测(YOLO, Faster R-CNN) - 医学影像分析 --- ### **二、RNN(循环神经网络)** #### 1. **核心设计思想** - **时序记忆**:通过隐藏状态传递历史信息 - **序列建模**:处理变长输入(如文本、时间序列) #### 2. **数学建模** - **时间步计算**: $$ h_t = \sigma(W_h h_{t-1} + W_x x_t + b) $$ $$ y_t = \text{Softmax}(W_y h_t + b_y) $$ 其中$\sigma$为激活函数(如tanh) #### 3. **变体结构** - **LSTM**(长短期记忆): $$ \begin{aligned} f_t &= \sigma(W_f [h_{t-1}, x_t] + b_f) \quad (\text{遗忘门}) \\ i_t &= \sigma(W_i [h_{t-1}, x_t] + b_i) \quad (\text{输入门}) \\ \tilde{C}_t &= \tanh(W_C [h_{t-1}, x_t] + b_C) \\ C_t &= f_t \circ C_{t-1} + i_t \circ \tilde{C}_t \\ o_t &= \sigma(W_o [h_{t-1}, x_t] + b_o) \quad (\text{输出门}) \\ h_t &= o_t \circ \tanh(C_t) \end{aligned} $$ - **GRU**(门控循环单元):简化版LSTM #### 4. **优势** - 天然适合**序列数据**处理 - 可建模时间依赖性(如语言模型) #### 5. **应用场景** - 机器翻译(早期Seq2Seq模型) - 语音识别(时序信号处理) - 股票价格预测 --- ### **三、CNN vs RNN对比** | 特性 | CNN | RNN | |---------------------|------------------------------|------------------------------| | **数据形态** | 网格数据(图像、视频) | 序列数据(文本、时间序列) | | **参数共享** | 空间维度共享(卷积核) | 时间维度共享(循环权重) | | **记忆能力** | 无显式记忆 | 通过隐藏状态传递历史信息 | | **并行计算** | 高度并行(全图卷积) | 需按时间步顺序计算 | | **典型问题** | 图像分类、物体检测 | 语言模型、时间序列预测 | --- ### **四、与Transformer的关联** 1. **CNN的替代**:Vision Transformer(ViT)将图像分块处理为序列 2. **RNN的替代**:Transformer通过自注意力机制解决RNN的长期依赖问题 3. **混合架构**:ConvTransformer(如Swin Transformer)结合局部感知与全局注意力 --- ### **五、实际案例验证** 1. **CNN案例**: 在ImageNet分类任务中,CNN卷积核学习到: - 第一层:边缘检测器(Gabor滤波器类似物) - 深层:纹理、物体部件组合 2. **RNN案例**: 对于句子"The cat which ate the fish ___ is sleeping",LSTM能通过记忆"cat"的单复数,正确预测空白处填"was"而非"were"。 --- ### **六、局限性** - **CNN**:缺乏对序列顺序的显式建模 - **RNN**:梯度消失/爆炸问题(LSTM/GRU部分缓解) - **两者共同缺陷**:长距离依赖处理能力弱于Transformer --- ### **总结** CNNRNN分别定义了**空间特征提取**和**时间序列建模**的范式,尽管Transformer在部分任务中表现更优,但二者仍是计算机视觉和序列建模的基础组件。实际应用中常结合使用(如CNN+RNN用于视频分析)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值