《基于ChatGPT、GPT-4等Transformer架构的自然语言处理》 是一本全面介绍Transformer模型及其在自然语言理解(NLU)中应用的书籍。NLU作为自然语言处理(NLP)的一个重要分支,在数字经济中扮演着核心角色。本书详细阐述了Transformer模型的四个关键阶段:预训练、有监督微调、奖励建模和强化学习 ,包括每个阶段的关键算法、数据处理方法、挑战和实践经验。
这份完整版的大模型书籍《基于ChatGPT、GPT-4等Transformer架构的自然语言处理》已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
书中从Transformer模型的基础知识讲起,探讨了其生态系统和基础模型特性,以及工业4.0中AI专家的发展历程。接着,介绍了从RNN、LSTM和CNN等传统深度学习架构到Transformer架构的演变,并通过实践讲解了多头注意力子层的工作原理。
进一步,书中深入探讨了BERT模型的架构和微调方法,以及如何从头开始预训练ROBERTa模型。还讨论了Transformer在处理下游NLP任务中的应用,如GLUE和SuperGLUE排行榜上的任务,并介绍了机器翻译、文本摘要、数据预处理和词元分析器等方面的内容。
此外,书中还涉及了基于BERT的语义角色标注、问答系统、情绪分析、假新闻分析等高级应用,并探讨了可解释AI和Transformer模型在计算机视觉领域的应用,如Reformer、DeBERTa、ViT、CLIP和DALL-E等模型。
这份完整版的大模型书籍《基于ChatGPT、GPT-4等Transformer架构的自然语言处理》已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈