大模型这两年被宣传的沸沸扬扬,好像它真的无所不能,似乎很快就要取代很多人的工作,但事实真的如此吗?非也。
尽管它让人们看到了通用人工智能的可能性,它可以写作、写诗、作曲、编程、画画、生成视频、写邮件等,但它并不是没有任何缺点的。
目前来说,它有三个非常大的局限性,导致它在应用过程中,并没有人们理想中那么好的效果。
这三个局限性是:知识的局限性;幻觉问题;数据安全问题。
01 局限一:知识的局限性
知识的局限性,是指大模型所具备的知识,完全停留在了它训练完成的那一刻。也就是说,训练数据中所包含的知识,就是大模型的所有知识。比如ChatGPT3.5的知识停留在2021年9月,ChatGPT4的知识停留在2023年4月。
如果你问它这个日期之后的知识,在不联网的情况下,它是不可能知道的。这是从时间的维度去讲,它不具备时时更新的数据。
如果从领域的维度去讲,它只具备通用领域的知识,也就是那些可以公开在网上搜索到的知识,尽管它包含海量的数据,但是它不太可能知道你个人的隐私数据,更不会知道某个公司内部的业务数据。
这种领域局限性,限制了大模型在企业中的进一步落地使用。
因为每个企业关心的问题是,大模型能否真正的帮助企业降本增效,而如果大模型连基本的业务问题都无法准确回答,那前面的目标其实很难实现。
02 局限二:幻觉问题
幻觉问题,是大模型老生常谈的一个问题了,几乎从它诞生的那一刻起,这个问题就经常被拿来讨论。
什么是大模型的幻觉问题呢?指它有时候会胡编乱造出一些看上去合理其实根本不符合事实的内容。
比如说,你想用大模型来帮助你查询某个主题的文献内容,然后大模型给出了很多参考文献,你真正去谷歌学术上面搜的时候,会发现很多文献全是假的,根本就没有。
还比如说,有时候大模型会一本正经地胡说八道,尤其在解数学题的时候,明明结果不正确,它非要说自己是正确的。
那么幻觉问题是怎么产生的呢?它和大模型的训练机制有关,现在大模型背后都是采用Transformer架构。
它在本质上是根据概率来预测下一个token,或者说,根据前面文本内容来预测下一个字。
比如说,当大模型发现前面的文本是:“今天我很…”,那么它会从海量的数据里面,寻找和“我很”向量距离比较近的词语,它可能会找到“开心”、“难过”、“饿”等等一系列的词语。
然后从中选择一个可能出现概率最高的词汇,比如说:“开心”。那么大模型就会完成续写:今天我很开心。
本质上来说,大模型并不理解它所说的话,尽管它能写诗,能写作,能干很多事。但其实,它做的只是一个数学上的统计概率的问题,解出最优答案,然后迅速续写前面的文本。
这样一个底层机制,也导致了大模型的幻觉问题,因为它总能找出下一个文本是什么,而从不关心这样衔接是否正确,这就大模型出现幻觉的根本原因。
03 局限三:数据安全问题
据说,有人利用各种Prompt小技巧,从ChatGPT那里套出很多隐私信息,后来在OpenAI公司安全部门的严加管制之下,这种情况才逐渐变少。
大模型的诞生,基于海量的训练数据,而这些数据里面大多数都是公开可查的,但有时也会涉及数据安全和版权问题。
像OpenAI就被多家公司或者机构投诉,侵犯了它们的数据版权,擅自使用它们的数据进行大模型训练。
由于现在这方面的法律法规还不是很完善,所以这种情况也很难有清晰的界定,去区分哪些是属于版权的数据信息。
从使用者的角度来说,当企业想要使用大模型给公司降本增效时,同样面临的数据安全问题。
一方面希望利用大模型的能力,帮助企业业务实现提效,另一方面又不希望公司的隐私和安全数据,暴露在大模型里面。
因此,就需要在大模型的基础之上,搭配其它的技术,来实现不同企业各自的个性化目标。
尾声:
综上所述,大模型并不是很多人想象中的那种无所不能,现阶段的AI和大模型,它仍有很大的局限性,最大的三个是:知识的局限性;幻觉问题;数据安全问题。
任何技术在发展的前期,都会遇到各种各样的问题,尽管而这些问题会影响其在某些应用场景下的使用,但随着时间的发展,这些问题都会有与之相应的解决方案出现。
比如说,目前非常流行的RAG技术,就可以在某种程度上,降低大模型上面三个局限性所带来的影响。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。