系列文章
YOLO系列基础
YOLO系列基础合集——小白也看得懂的论文精解-CSDN博客
YOLO系列正传
YOLO系列正传(一)类别损失与MSE损失函数、交叉熵损失函数-CSDN博客
YOLO系列正传(二)YOLOv3论文精解(上)——从FPN到darknet-53-CSDN博客
YOLO系列正传(三)神经网络的反向传播(back propagation)与公式推导-CSDN博客
YOLO系列正传(四)YOLOv3论文精解(下)——损失函数推导与其他优化项-CSDN博客
YOLO系列正传(五)YOLOv4论文精解(上):从CSPNet、SPP、PANet到CSPDarknet-53-CSDN博客
目录
YOLOv4基础介绍
YOLOv4进一步优化了YOLOv3,主要改进点包括:
- 主干网络:使用了CSPDarknet-53替代原YOLOv3中的Darknet-53。
- 新方法引入:例如Mish激活函数、Mosaic数据增强、DropBlock正则化和自对抗训练(SAT)。
- 优化策略:使用了CIoU Loss和多锚点匹配策略,使得模型在准确率和速度上实现了更好的平衡。
我们本文专注与YOLOv4网络结构的内容,即CSPDarknet-53的结构梳理。
从CSPNet开始
背景与改进
跨阶段部分连接网络CSPNet(Cross Stage Partial Network)是针对现有CNN设计的一种改进结构,旨在解决冗余梯度问题并减少计算成本。其实是类似残差结构中的一种,但是相比较于最基本的残差结构,CSPNet有两点不同:
- CSPNet在密集层之后还有一层卷积作为过渡层
- CSPNet在跨阶段连接分支上也有一层卷积进行信息的选择性传递。
有关CSPNet的基础内容,可以查看以下博客:
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解-CSDN博客
以上博客讲诉了残差网络Residual、加权残差连接WRC、以及跨阶段部分连接CSP的基础信息。
本博文在上诉的基础上更进一步详解CSPNet的此两点不同
过渡层详解
过渡层的主要作用是用以在反向传播中梯度传导过程中过渡传导过程。图例如下:
(c)图是没有过渡层的CSPNet,(d)图是有过渡层的CSPNet