高铁车辆和轨道耦合模型

车辆模型参数

g=9.8;                     %重力加速度(m/s^2)
Lc=9.0;                    %车辆定距之半(m)
Lt=1.25;                   %转向架固定轴距之半(m)
Kpz=1.87E6;                %一系悬挂刚度(N/m)
Cpz=5E5;                   %一系悬挂阻尼(N.s/m)
Ksz=1.72E6;                %二系悬挂刚度(N/m)
Csz=1.96E5;                %二系悬挂阻尼(N.s/m)
Mc=30000;                  %车体质量(Kg)
Mt=3000;                   %前后转向架构架质量(Kg)
Mw=1000;                   %各轮对质量(Kg)
Jc=2.0E6;                 %车体点头惯量(Kg.m^2)
Jt=2000;                   %前后转向架点头惯量(Kg.m^2)
R=0.4575;                  %车轮半径(m)

高速线路轨道模型参数

E=2.059E11;                %钢轨弹性模量(Pa/m)
I=3.217E-5;                %钢轨截面惯性矩(m^4)
Mr=60.64;                  %钢轨每延米质量(Kg)
Ms=170;                    %每根轨枕质量(Kg)
Kp=6.0E7;                  %轨下垫层刚度(N/m)
Cp=7.5E4;                  %轨下垫层阻尼(N.s/m)
Ls=0.6;                    %轨枕间距(m)
Le=1.175;                  %半轨枕有效支承长度
Lb=0.277;                  %轨枕底面宽度(m)
Rho=1.9E3;                 %道床密度(Kg/m^3)
Eb=1.2E8;                  %道床弹性模量(Pa/m)
Cb=6.0E4;                  %道床阻尼(N.s/m)
Kw=7.84E7;                 %道床剪切刚度(N/m)       
Cw=8.0E4;                  %道床剪切阻尼(N.s/m)
a=35;                      %轨下压力扩散角(°)
hb=0.35;                   %道床厚度(m)
Ef=1.9E8;                  %路基弹性模量(Pa/m)
Cf=1.0E5;                  %路基阻尼(N.s/m)

计算耦合系统中的各矩阵

M=blkdiag(Mv,MT);
C=blkdiag(Cv,CT);
K=blkdiag(Kv,KT);

计算各车轮的运动坐标

xw(:,t+1)=[2*(Lc+Lt)+v*t.*dt;2*Lc+v*t.*dt;2*Lt+v*t.*dt;v*t.*dt];

for j=1:4
    Zrw(j,t+1)=0;
    Vrw(j,t+1)=0;
    Arw(j,t+1)=0;
    for k=1:NM
  Zrw(j,t+1)=Zrw(j,t+1)+(2/(Mr*L))^0.5*sin(k*pi*xw(j,t+1)).*X(10+k,t+1);
  Vrw(j,t+1)=Vrw(j,t+1)+(2/(Mr*L))^0.5*sin(k*pi*xw(j,t+1)).*V(10+k,t+1);
  Arw(j,t+1)=Arw(j,t+1)+(2/(Mr*L))^0.5*sin(k*pi*xw(j,t+1)).*A(10+k,t);
    end
    Z0(:,t+1)=0.005*sind(20.*t/1000)+0.003*cosd(10.*t/1000+30);
    Deta_Z(j,t+1)=X(j+6,t+1)-Zrw(j,t+1)-Z0(:,t+1);
    pw(j,t+1)=(1/G.*Deta_Z(j,t+1))^1.5;
    if  pw(j,t+1)<0
        pw(j,t+1)=0;
    else pw(j,t+1)=pw(j,t+1);
    end
    sum_pw=sum_pw+pw(j,2);
    sum_deta_pw=sum_deta_pw+abs(pw(j,2)-pw(j,1));
end
if sum_deta_pw./sum_pw>1e-2
    pw(1:4,2)=1e-2.*sum_pw;
end

翟婉明的二维车轨耦合模型是一种用于描述车辆行驶在曲线道路上的模型。以下是该模型的MATLAB代码示例: ``` % 定义常数 mass = 1500; % 车辆质量 g = 9.8; % 重力加速度 l = 2.9; % 车辆轴距 kf = 30000; % 前轮侧向刚度 kr = 30000; % 后轮侧向刚度 % 轨迹函数 function [x, y] = trajectory(t) % 在这里定义车辆行驶轨迹 % 返回轨迹上的坐标 (x, y) % 根据时间t计算车辆在轨迹上的位置 end % 求解微分方程(车辆运动方程) function dxdt = vehicleMotion(t, x) % x是状态向量,包含车辆的位置、速度、横摆角等信息 % 在这里计算车辆的运动微分方程 % 返回车辆状态的导数 dx/dt end % 仿真计算车辆运动 tspan = [0 10]; % 仿真时间范围 x0 = [0 0 0 0]; % 初始状态,位置、速度、横摆角 [t, x] = ode45(@vehicleMotion, tspan, x0); % 使用ode45求解微分方程 % 绘制车辆运动轨迹 for i=1:length(t) [p1x, p1y] = trajectory(t(i)); % 获取当前时间车辆的轨迹坐标 p2x = p1x + l*sin(x(i,3)); % 计算车辆后轮位置 p2y = p1y - l*cos(x(i,3)); plot([p1x p2x], [p1y p2y], 'b-', 'LineWidth', 2); % 绘制车辆轨迹 hold on; end title('车辆运动轨迹'); xlabel('位置X'); ylabel('位置Y'); ``` 以上是翟婉明的二维车轨耦合模型的一份MATLAB代码示例。这段代码定义了车辆模型的常数和轨迹函数,并使用ode45求解了车辆运动的微分方程。最后,通过绘图函数plot将车辆运动的轨迹绘制出来。具体的轨迹函数和车辆运动微分方程需要根据具体情况进行定义和计算。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值