车辆模型参数
g=9.8; %重力加速度(m/s^2)
Lc=9.0; %车辆定距之半(m)
Lt=1.25; %转向架固定轴距之半(m)
Kpz=1.87E6; %一系悬挂刚度(N/m)
Cpz=5E5; %一系悬挂阻尼(N.s/m)
Ksz=1.72E6; %二系悬挂刚度(N/m)
Csz=1.96E5; %二系悬挂阻尼(N.s/m)
Mc=30000; %车体质量(Kg)
Mt=3000; %前后转向架构架质量(Kg)
Mw=1000; %各轮对质量(Kg)
Jc=2.0E6; %车体点头惯量(Kg.m^2)
Jt=2000; %前后转向架点头惯量(Kg.m^2)
R=0.4575; %车轮半径(m)
高速线路轨道模型参数
E=2.059E11; %钢轨弹性模量(Pa/m)
I=3.217E-5; %钢轨截面惯性矩(m^4)
Mr=60.64; %钢轨每延米质量(Kg)
Ms=170; %每根轨枕质量(Kg)
Kp=6.0E7; %轨下垫层刚度(N/m)
Cp=7.5E4; %轨下垫层阻尼(N.s/m)
Ls=0.6; %轨枕间距(m)
Le=1.175; %半轨枕有效支承长度
Lb=0.277; %轨枕底面宽度(m)
Rho=1.9E3; %道床密度(Kg/m^3)
Eb=1.2E8; %道床弹性模量(Pa/m)
Cb=6.0E4; %道床阻尼(N.s/m)
Kw=7.84E7; %道床剪切刚度(N/m)
Cw=8.0E4; %道床剪切阻尼(N.s/m)
a=35; %轨下压力扩散角(°)
hb=0.35; %道床厚度(m)
Ef=1.9E8; %路基弹性模量(Pa/m)
Cf=1.0E5; %路基阻尼(N.s/m)
计算耦合系统中的各矩阵
M=blkdiag(Mv,MT);
C=blkdiag(Cv,CT);
K=blkdiag(Kv,KT);
计算各车轮的运动坐标
xw(:,t+1)=[2*(Lc+Lt)+v*t.*dt;2*Lc+v*t.*dt;2*Lt+v*t.*dt;v*t.*dt];
for j=1:4
Zrw(j,t+1)=0;
Vrw(j,t+1)=0;
Arw(j,t+1)=0;
for k=1:NM
Zrw(j,t+1)=Zrw(j,t+1)+(2/(Mr*L))^0.5*sin(k*pi*xw(j,t+1)).*X(10+k,t+1);
Vrw(j,t+1)=Vrw(j,t+1)+(2/(Mr*L))^0.5*sin(k*pi*xw(j,t+1)).*V(10+k,t+1);
Arw(j,t+1)=Arw(j,t+1)+(2/(Mr*L))^0.5*sin(k*pi*xw(j,t+1)).*A(10+k,t);
end
Z0(:,t+1)=0.005*sind(20.*t/1000)+0.003*cosd(10.*t/1000+30);
Deta_Z(j,t+1)=X(j+6,t+1)-Zrw(j,t+1)-Z0(:,t+1);
pw(j,t+1)=(1/G.*Deta_Z(j,t+1))^1.5;
if pw(j,t+1)<0
pw(j,t+1)=0;
else pw(j,t+1)=pw(j,t+1);
end
sum_pw=sum_pw+pw(j,2);
sum_deta_pw=sum_deta_pw+abs(pw(j,2)-pw(j,1));
end
if sum_deta_pw./sum_pw>1e-2
pw(1:4,2)=1e-2.*sum_pw;
end