目标检测评价指标mAP计算

有3张图如下,要求算法找出face。蓝色框代表标签label,绿色框代表算法给出的结果pre,旁边的红色小字代表置信度。

设定第一张图的预测框叫pre1,第一张的真实框叫label1。第二张、第三张同理。

1.根据IOU计算TP,FP

首先我们计算每张图的pre和label的IOU,根据IOU是否大于0.5来判断该pre是属于TP还是属于FP。显而易见,pre1是TP,pre2是FP,pre3是TP。

2.置信度排序

根据每个pre的置信度进行从高到低排序,这里pre1、pre2、pre3置信度刚好就是从高到低。

3.在不同置信度阈值下获得Precision和Recall

  • 首先,设置阈值为0.9,无视所有小于0.9的pre。那么检测器检出的所有框pre即TP+FP=1,并且pre1是TP,那么Precision=1/1。因为所有的label=3,所以Recall=1/3。这样就得到一组P、R值。
  • 然后,设置阈值为0.8,无视所有小于0.8的pre。那么检测器检出的所有框pre即TP+FP=2,因为pre1是TP,pre2是FP,那么Precision=1/2=0.5。因为所有的label=3,所以Recall=1/3=0.33。这样就又得到一组P、R值。
  • 再然后,设置阈值为0.7,无视所有小于0.7的pre。那么检测器检出的所有框pre即TP+FP=3,因为pre1是TP,pre2是FP,pre3是TP,那么Precision=2/3=0.67。因为所有的label=3,所以Recall=2/3=0.67。这样就又得到一组P、R值。

4.绘制PR曲线并计算AP值

根据上面3组PR值绘制PR曲线如下。然后每个“峰值点”往左画一条线段直到与上一个峰值点的垂直线相交。这样画出来的红色线段与坐标轴围起来的面积就是AP值。

 

5.计算mAP

AP衡量的是对一个类检测好坏,mAP就是对多个类的检测好坏。就是简单粗暴的把所有类的AP值取平均就好了。比如有两类,类A的AP值是0.5,类B的AP值是0.2,那么mAP=(0.5+0.2)/2=0.35

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值