matlab simulink三自由度汽车模型

 

 

 

 

由牛顿第二定理在x,y,z轴上有:

轮胎的纵向力和侧向力可以表示如下:

前轮车速与x轴夹角可表示为:

前后轮胎侧偏角:

前后轮胎侧偏力:

前后轮胎纵向力:

车辆坐标系与车身坐标系之间的转换:

从而有:

 clear
clc
close all
V=80/3.6;%车速
Sf=0.2; Sr=0.2;
sf=0.2; sr=0.2;
%syms a b;%前后车轮距离车辆质心的距离,车辆固有参数
a=1.232;b=1.468;
%syms C_cf C_cr C_lf C_lr;%分别为前后车轮的纵横向侧偏刚度,车辆固有参数
Ccf=66900;Ccr=62700;Clf=66900;Clr=62700;
%syms m g I;%m为车辆质量,g为重力加速度,I为车辆绕Z轴的转动惯量,车辆固有参数
m=1723;g=9.8;I=4175;
% 车辆动力学模型求解

 

### 使用Matlab实现汽车轮胎侧向力的估计 #### 方法一:基于滑模观测器(SMO) 在解决传统轮胎模型带来的一系列问题时,一种有效的方法是采用基于滑模观测器(SMO)的技术来估计轮胎力[^2]。此方法的核心优势在于它不依赖于具体的轮胎模型及其参数,从而减少了由于轮胎特性变化引起的误差。 对于具体实施而言,在MATLAB/Simulink环境中构建非线性滑模观测器用于实时监测并预测轮胎所受之力。这种方法特别适用于复杂路况下的动态响应分析,如双移线路况测试中表现出较高的精度[^4]。 ```matlab % 定义滑模观测器的状态变量和输入输出关系 function dxdt = SMO_TireForceEstimator(t,x,u,params) % 参数设置... end % 设置初始条件以及仿真时间范围 initialConditions = ...; timeSpan = [tStart tEnd]; % 调用ode求解器进行数值积分 [t,y] = ode45(@(t,x) SMO_TireForceEstimator(t,x,[],params), timeSpan, initialConditions); ``` #### 方法二:结合无迹卡尔曼滤波(UKF) 另一种途径则是借助无迹卡尔曼滤波算法来进行更精确的状态估计。通过将Carsim中的车辆动力学模拟数据导入到Simulink平台,并在此基础上应用UKF完成对包括但不限于横向加速度在内的多个关键物理量的同时估测[^3]。值得注意的是,当涉及到更多维度的状态矢量时,可能会面临更大的挑战,因为这不仅意味着更多的未知数需要被确定下来,同时也可能导致累积性的测量偏差放大效应[^5]。 ```matlab % 初始化UKF对象及相关配置项 ukfObj = unscentedKalmanFilter(@stateTransitionFcn,@measurementFcn,... initialState,... % 进行一次完整的迭代更新过程 predict(ukfObj); % 预测阶段 correct(ukfObj,zMeas); % 校正阶段 (zMeas为当前时刻的实际观测值) estimatedState = getState(ukfObj); % 用户自定义的状态转移函数与观测量映射关系描述 function predictedX = stateTransitionFcn(timePrev,statePrev,timeCurr,param) ... end function zPred = measurementFcn(state,param) ... end ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值