分数阶PID控制

本文介绍了一种分数阶PID控制器,将传统PID的积分和微分部分拓展到分数阶,适用于分数阶和部分整数阶系统,有望超越整数阶PID的效果。文章提供了其数字实现方法,通过Grunwald-Letnicov分数微积分进行有限项近似,并利用Z变换计算控制器。仿真结果验证了该方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、内容简介

分数阶PID控制
361-可以交流、咨询、答疑

2、内容说明

提出一种新的比例、积分、微分(PID)控制器--分数阶PID控制器(包含分数阶积分器和微分器),把传统的PID控制器的阶次推广到分数领域,它不但适合于分数阶系统,也适用于某些整数阶系统,并能够取得一些优于整数阶PID控制器的效果.给出了分数阶PID控制器的一种数字实现形式,运用Grunwald-Letnicov分数微积分定义,取有限项作近似处理,从而可以直接在时域中运用Z变换方法来计算分数阶PID控制器.仿真结果证明了所给方法的有效性.


3、仿真分析

 

 

 


4、参考论文

分数阶PID控制器及其数字实现

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值