全景环视AVM标定

本文详细介绍了全景环视AVM系统的相机标定过程,包括前言、鱼眼模型、标定流程和角点提取。在鱼眼模型部分,解释了鱼眼相机的畸变特点。标定流程涉及世界坐标原点确定、角点提取和Map生成。角点提取利用亚像素坐标计算和特征点剔除策略。最后,Map生成用于提高图像显示的实时性和准确性。
摘要由CSDN通过智能技术生成

目录

一、前言

二、鱼眼模型

三、标定流程

四、角点提取

4.1 亚像素坐标计算

4.2 特征点剔除

五、Map生成


一、前言

传感器的名义值、理论值、设计值,即设定好的本身参数、与车辆相对安装位置,但是由于耦合误差,工艺、人为等因素导致与理论值出现偏差,而APP按照设计值来计算,如话预想线,就会与3D世界位置出现不匹配的问题,为了解决这一问题需要标定也叫校准。

校准的参数包括相机外参,相机内参。外参包括x,y,z,h,alpha,beta,gama,内参包括光轴中心,像素物理值,焦距等。

二、鱼眼模型

针孔相机及小孔成像,从世界转相机坐标系,通过旋转和平移即可。鱼眼相机由于给予比较多的光圈,产生折射视野比较大,但是会出现切向及径向畸变,效果会出现枕形和桶形畸变效果。下面是鱼眼摄像头坐标系:

上平面是距离球心焦距为f的平面,下平面是与半径为1的球面相切的平面。

P是相机

AVM(Around View Monitor)环视拼接算法是指将多个摄像头拍摄到的图像进行拼接,得到一张包含车辆周围环境的全景图像的算法。AVM环视拼接算法的难点主要有以下几个方面: 1. 摄像头标定:多个摄像头的标定是环视拼接算法的第一步,精确的摄像头标定可以提高后续图像拼接的精度。但是,摄像头标定的过程需要考虑多个因素,如摄像头内参、外参、畸变等,标定精度的高低直接影响到后续图像拼接的效果。 2. 图像配准:多个摄像头拍摄到的图像需要进行配准,以确保拼接后的图像无缝连接。对于多个摄像头之间存在视角差异和畸变等问题的情况,图像配准的难度会更大。 3. 图像拼接:图像拼接是环视拼接算法的核心,其难点在于如何将多个摄像头拍摄到的图像拼接成一张无缝连接的全景图像。对于环境中存在尺度变化、遮挡、背景变化等问题的情况,图像拼接的难度会更大。 4. 实时性要求:在车辆行驶过程中,需要实时地获取车辆周围的环境信息,因此AVM环视拼接算法需要具备实时性。在保证拼接精度的前提下,如何提高算法的运行速度是一个难点。 5. 系统稳定性:AVM环视拼接算法需要在车辆行驶过程中长时间稳定地运行,因此需要考虑算法的鲁棒性和容错性,尤其是在恶劣天气和弱光环境下的表现。 综上所述,AVM环视拼接算法的难点主要在于摄像头标定、图像配准、图像拼接、实时性要求和系统稳定性等方面,需要综合考虑多个因素并进行优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值