在上一篇文章《那么CUDA是如何进行并行编程的?》中,为了让GPU的并行计算更加高效,本篇文章从高效的内存策略和屏障和同步机制下的编程规则这两个角度来建议CUDA编程者更加高效的利用GPU。
- 高效的内存策略
所谓的高效的内存策略,其实就是两个原则:第一保证每个线程的计算量大,第二每个线程计算时对内存的读取速度快。本篇文章主要展开讨论下如何使得线程计算时对内存的读取速度快。直白来说就是如下两种策略能够达到该目的:
- 每个线程读少量数据
- 每个线程读更快些
上述的第一点我们可以由编写的程序来控制,而上述的第二点可以从两个层面做到,包括硬件和程序。
所述的硬件,其实就是我们在上一篇文章中讲到的,不同位置的内存读取速度不同,如下图所示,我们要尽可能多的读取GPU的本地内存。
所述的程序,其实是当你必须使用全局内存,而没办法使用本地内存的情况下,利用编写程序来加快内存的读取速度,该策略被称为合并全局内存,示意图如下:
如上图所示,我们尽可能保证在全局内存中连续读取,退而求其次可以保证有规律的读取,务必减少使用随机读取内存的方式。而上述左侧的代码段中g</