电容二极管升压电路分析

当电路未通电时,各处电平都是0V。


当通电时,右上角+5V_ALWP通过D32的1引脚对C710、C722、C715、C719进行充电,此时电容上两端的电位如上图所示。此时+15V_ALWP输出端口的实际电平为5V。


当U64的Y引脚开始输出幅值为5V的方波,当Y第一次处于5V电位时:

1.由于电容两端的电压不能突变,此时C715两端的电压为左边5V,右边为10V,然后电流经过D35的2引脚对C719电容充电,充完电后C719的电压升到了10V。

2.同时,Y输出的5V也对C710进行充电,C710两端的电压为左边5V,右边为10V,然后电流经过D32的2引脚对C722进行充电,充完电后C722的电压升到了10V。

此时+15V_ALWP输出端口的实际电平为10V。


当U64的Y引脚开始输出幅值为5V的方波,当Y第一次处于0V电位时:

1.由于电容两端的电位不能突变,此时C715两端的电压为左边0V,右边5V。当C715电压为5V后,由于C722电压10V大于C715的5V,C722会对C715充电。充电后C715=C722=7.5V。此时C715的电压依然比C719的电压低。但是由于D32二极管反向截止,所以C719不会对C715充电。C719的电压保持在10V。

2.同时,C710的电压为左边0V,右边5V,C722的左端电压为7.5V,由于D32的2引脚的反向截止,C722依然不会对C710充电,C722保持在7.5V。

当Y第二次处于5V时,C722通过C710、D32的2引脚又被充电为10V。当Y又处于低电平时,C722(10V)对C715(7.5V)充电。C715的电压变为8.75V。经过数次过程后,C715两端的电压差上升为了10V,当Y再次为5V时,C715的右端的电位变为了15V。当然,在整个过程中,C715都在通过D35的2引脚向C719充电。

最终+15V_ALWP输出端口的电平变为了15V。


<think>好的,用户询问的是电容两端电压的计算公式或原理。首先,我需要回顾相关的知识。根据引用[1],电荷量Q等于电压U乘以电容C,即$Q = U \cdot C$。这应该是基本公式。接下来,用户可能还想知道这个公式的应用场景或者推导过程。比如,在引用[2]中提到了阻容电路中电压随时间变化的推导,使用戴维南定理进行分析。这里可能需要提到RC电路的充放电过程,以及时间常数的概念。 然后,用户的问题还涉及到电容电压不能突变的特性。根据引用[3]和[4],电容电压不能突变是因为电荷量无法瞬间改变,这涉及到电容的储能原理。当开关闭合瞬间,电荷量Q不能突变,因此根据Q=CU,电压U也不能突变。需要解释这一过程,可能结合充放电曲线和指数函数来说明。 接下来,我需要整理这些信息,确保公式使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。同时,要引用正确的来源,比如在提到电荷公式时引用[^1],在讨论电压不能突变时引用[^3]和[^4]。 可能还需要考虑用户的实际需求,比如他们是否在解决电路设计问题,或者在学习基础电路理论。因此,除了给出公式,还需要解释其应用场景,例如RC电路的时间常数计算,或者瞬态响应分析。 最后,生成相关问题时要围绕电容电压展开,比如公式的应用、突变特性的原因、实际电路中的影响等。确保问题覆盖用户可能感兴趣的各个方面,帮助他们深入理解。</think>### 电容两端电压计算公式及原理 #### 1. **电容电压的基本公式** 电容两端电压的计算基于电荷量与电容量的关系,核心公式为: $$Q = U \cdot C$$ 其中: - $Q$ 为电容存储的电荷量(单位:库仑,C); - $U$ 为电容两端电压(单位:伏特,V); - $C$ 为电容量(单位:法拉,F)。 **推导**: 根据定义,电容量 $C$ 是单位电压下存储的电荷量,因此电压 $U$ 可表示为电荷量 $Q$ 与电容量 $C$ 的比值: $$U = \frac{Q}{C}$$ --- #### 2. **动态电路中电压的变化** 在动态电路(如阻容电路)中,电容电压随时间变化的公式可通过 **RC充放电方程** 描述。例如,直流电源通过电阻 $R$ 对电容 $C$ 充电时: $$U(t) = U_{\text{max}} \left(1 - e^{-\frac{t}{RC}}\right)$$ - $U_{\text{max}}$ 为电源电压; - $RC$ 为时间常数(单位:秒),决定充放电速度[^2]。 --- #### 3. **电容电压的不可突变性** 电容两端电压不能突变是重要特性,原因如下: 1. **电荷连续性**:根据公式 $Q = C \cdot U$,电荷量 $Q$ 的突变需要无限大电流($I = \frac{dQ}{dt}$),这在物理上不可实现; 2. **能量守恒**:电容储能公式为 $E = \frac{1}{2} C U^2$,能量变化需要时间[^3][^4]。 **示例**: 开关闭合瞬间,电容电压保持原值(如从 0V 开始逐渐上升),如图5-17所示。 --- #### 4. **应用场景** 1. **滤波电路**:利用电容电压的缓慢变化平滑电压波动; 2. **延时电路**:通过 RC 时间常数控制信号延迟; 3. **能量存储**:用于备用电源或脉冲功率设备。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qlexcel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值