动手学运动规划:1.2 车辆运动学:阿克曼转向模型

你见过凌晨三点的洛杉矶吗 —科比 布莱恩特

🏰代码及环境配置:请参考0.2 环境配置和代码运行 | 动手学运动规划!


1.2.1 阿克曼转向模型(Ackermann steering geometry)

阿克曼转向模型是一种为了解决交通工具转弯时,内外转向轮路径指向的圆心不同的几何学,

这个想法是由德国车辆工程师“Lankensperger”于1817年提出的,之后由他的英国代理商Rudolph Ackermann于1818年提出专利。

依据阿克曼转向几何设计的车辆在转弯时,两个前轮是转向角不一样.内侧轮比外侧轮的转向角大;两个后轮不转向;四个轮子路径的圆心会交汇到同一个点,也就是瞬时转向中心.

(1) 基本参数

  • v : v: v:车辆速度。
  • ( X , Y ) : (X,Y): (X,Y):车辆后轴中心位置.
  • O : O: O:车辆瞬时转向中心.
  • R : R: R:车辆瞬时转向半径.
  • θ : \theta: θ:航向角,车辆当前位置与横坐标的夹角,即车辆的行驶方向。
  • ω : \omega: ω:车辆绕瞬时转向中心旋转的角速度。
  • δ i , δ o : \delta_i,\delta_o: δi,δo:内侧前轮转角,外侧前轮转角。
  • L : L: L:轴距,前后轮之间的距离。
  • W : W: W:车辆宽度
  • Δ t \Delta t Δt:时间步长

(2) 前轮偏角的几何关系

由于阿克曼模型的两前轮转角不同,可以分别得到

内侧前轮转角,外侧前轮转角,平均前轮转角:

t a n ( δ o ) = L R + W 2 t a n ( δ i ) = L R − W 2 t a n ( δ ) = δ o + δ i 2 ≅ L R \begin{aligned}tan(\delta_o) &=\frac{L}{R+\frac{W}{2}} \\ tan(\delta_i) & =\frac{L}{R-\frac{W}{2}}\\ tan(\delta) &= \frac{\delta_o+\delta_i}{2} \\ &\cong \frac{L}{R}\end{aligned} tan(δo)tan(δi)tan(δ)=R+</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值