阿克曼运动解算

阿克曼运动解算


在这里插入图片描述

L:前后轮轴距
W:左右轮距
r: 后轮内切圆半径
a: 左轮内切圆角度,也就是内轮的转角
b: 中心自行车模型的转角
阿克曼模型的内转角大于外转角
根据车子接收的线速度和角速度推导出内轮转角
公式推导:
r:未知
r = L/tanb-w/2
sin a = L/r
tan b = L/(r + w/2)
tan a = L/r = L/(L/tanb - w/2) = 2Ltanb/(2L - wtanb)
a = arctan(2Ltanb/2L - wtanb) = arctan(2Lsinb/(2Lcosb - w*sinb))

### 阿克曼运动学模型的限制和约束条件 阿克曼运动学模型是一种广泛应用于汽车和其他轮式机器人中的运动学建模方法。该模型描述了车辆前轮转向度与车身方向之间的关系,适用于具有固定轴距和可转动方向盘的车辆。以下是阿克曼运动学模型的主要限制和约束条件: #### 1. **几何约束** 阿克曼运动学模型假设车辆的前后车轮分别位于两条平行线上,并且前轮能够围绕垂直于地面的轴旋转。这种设计使得所有车轮在转弯过程中沿圆弧轨迹移动[^1]。具体来说: - 前轮的转向需满足特定的几何关系,即内外侧车轮的转向不同,以确保无滑动的理想情况下的纯滚动。 - 车辆的最小转弯半径受到轴距长度的影响。 #### 2. **速度和加速度约束** 为了实现稳定的行驶性能,阿克曼模型通常会引入速度和加速度方面的约束条件。例如: - 车辆的最大线速度 \(v_{max}\) 和最大速度 \(\omega_{max}\) 是有限制的,这取决于驱动电机的能力以及轮胎抓地力等因素[^2]。 - 加减速过程应平缓过渡,避免因突变引起乘客不适或者机械部件损坏。 #### 3. **物理边界条件** 实际应用中还需要考虑一些额外的物理边界条件来完善控制系统的设计: - 方向盘转范围受限于硬件结构本身; - 存在防止与其他物体发生碰撞的安全距离阈值设定。 #### 4. **动态特性考量** 尽管上述讨论主要集中在静态或准静态度下分析问题,但在某些情况下也需要关注系统的动态响应行为。利用诸如LQR这样的现代控制理论可以进一步提升对于复杂工况适应能力的同时保持良好稳定性表现[^3]。 ```python import numpy as np def ackermann_model(v, delta, L): """ 计阿克曼运动学模型的速度分量 参数: v (float): 当前线性速度. delta (float): 前轮转向(单位: 弧度). L (float): 轴距. 返回: tuple[float]: X方向上的速度Vx,Y方向上速度Vy及绕Z轴速度Wz. """ Vx = v * np.cos(delta) Vy = v * np.sin(delta) Wz = v / L * np.tan(delta) return Vx, Vy, Wz ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值