改进的YOLOv8目标检测算法与yolov8添加注意力机制andyolov8小目标检测改进

改进的YOLOv8目标检测算法

在这里插入图片描述

摘要

本文档详细介绍了改进后的YOLOv8s(You Only Look Once v8 small)目标检测算法,该算法在原始模型的基础上引入了全局注意力机制(Global Attention Mechanism, GAM)、改进的颈部结构(Modified Neck),以及智慧交并比(Wise Intersection over Union, WIoUv3)。这些增强措施显著提升了模型在相机陷阱数据集上的泛化性能。通过将这些新技术集成到YOLOv8s中,我们不仅提高了模型对小物体和复杂背景下的检测能力,还增强了其适应不同应用场景的能力。

引言

随着计算机视觉技术的发展,目标检测作为其中的一个重要分支,在众多领域得到了广泛应用,如安防监控、自动驾驶、智能交通管理等。YOLO系列算法以其快速的速度和较高的准确性而闻名,成为目标检测任务中的首选之一。然而,在某些特定的应用场景下,例如使用相机陷阱进行野生动物监测时,由于环境条件复杂多变,传统的目标检测方法可能会遇到挑战。为此,研究人员不断探索新的方法和技术来优化现有模型,以满足更加苛刻的需求。本文介绍了一种改进版的YOLOv8s算法,旨在解决上述问题,并提供更好的泛化性能。

1. 改进概述

在这里插入图片描述

1.1 全局注意力机制(GAM)

全局注意力机制是一种能够捕捉图像全局信息的方法,它可以帮助网络更好地理解输入图像的整体结构,从而改善对于细粒度特征的学习效果。在YOLOv8s中引入GAM模块后,模型可以更有效地处理具有复杂背景或低对比度的小目标检测任务。具体来说,GAM模块位于ultralytics/nn/modules/attention.py文件中,通过对特征图施加全局上下文约束,使得每个位置都能获得来自整个图像的信息支持。这有助于提高模型对局部细节的关注度,进而提升检测精度。

import torch
import torch.nn as nn
import math
import torch.nn.functional as F
 
class h_sigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)
 
    def forward(self, x):
        return self.relu(x + 3) / 6
 
class h_swish(nn.Module):
    def __init__(self, inplace=True):
        super(h_swish, self).__init__()
        self.sigmoid = h_sigmoid(inplace=inplace)
 
    def forward(self, x):
        return x * self.sigmoid(x)
 
class CoordAtt(nn.Module):
    def __init__(self, inp, reduction=32):
        super(CoordAtt, self).__init__()
        oup = inp
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))
 
        mip = max(8, inp // reduction)
 
        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(mip)
        self.act = h_swish()
        
        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
        
 
    def forward(self, x):
        identity = x
        
        n,c,h,w = x.size()
        x_h = self.pool_h(x)
        x_w = self.pool_w(x).permute(0, 1, 3, 2)
 
        y = torch.cat([x_h, x_w], dim=2)
        y = self.conv1(y)
        y = self.bn1(y)
        y = self.act(y) 
        
        x_h, x_w = torch.split(y, [h, w], dim=2)
        x_w = x_w.permute(0, 1, 3, 2)
 
        a_h = self.conv_h(x_h).sigmoid()
        a_w = self.conv_w(x_w).sigmoid()
 
        out = identity * a_w * a_h
 
        return out
1.2 改进的颈部结构(Modified Neck)

颈部是连接骨干网与头部的关键部分,负责融合来自不同层次的特征图。为了进一步加强这一过程,我们在YOLOv8s中设计了一种改进型颈部结构,即在原有的FPN基础上增加了更多的横向连接,允许更深层次之间直接传递信息。这种设计不仅可以促进特征复用,还可以帮助缓解梯度消失问题,确保所有尺度上的特征都能得到充分利用。相关改动体现在ultralytics/nn/tasks.py文件中,其中定义了一系列新的操作来实现更高效的特征整合。

1.3 智慧交并比(WIoUv3)

传统的交并比(Intersection over Union, IoU)用于衡量预测框与真实框之间的重叠程度,但在某些情况下可能无法准确反映两者之间的关系,特别是在边界框存在较大偏移时。为了解决这个问题,我们提出了一种称为WIoUv3的新指标,它结合了几何距离和角度偏差等因素,能够更加全面地评估边界框的质量。WIoUv3已经被集成到多个关键组件中,包括损失函数(ultralytics/nn/utils/loss.py)、评估指标(ultralytics/nn/utils/metrics.py)以及训练辅助工具(ultralytics/nn/utils/tal.py),以确保在整个训练过程中都能充分利用这一改进。

2. 实现细节
2.1 文件结构与配置

为了使这些改进能够顺利应用于YOLOv8s,我们对源代码进行了必要的调整:

  • 初始化模块 (ultralytics/nn/modules/init.py)

    • 增加了对新添加模块的支持,如GAM等。
  • 任务定义 (ultralytics/nn/tasks.py)

    • 添加了新的操作来支持改进后的颈部结构,确保特征图可以在不同层次间高效传递。
  • YAML配置文件 (ultralytics/cfg/models/v8/yolov8-GAM-Attention.yaml)

    • 提供了一个全新的配置文件,详细描述了如何构建包含上述改进的YOLOv8s模型。用户可以根据自己的需求修改参数设置,以达到最佳性能。
      在这里插入图片描述
2.2 训练与评估

在实验阶段,我们选择了几个公开可用的数据集来进行测试,包括但不限于MS COCO、PASCAL VOC等。通过比较改进前后模型的表现,我们可以观察到以下几个方面的变化:

  • 检测精度:得益于GAM和改进的颈部结构,模型在各类别上的平均精度均有所提升,尤其是一些难以区分的小物体。
  • 泛化能力:WIoUv3的引入使得模型在面对未知样本时更具鲁棒性,减少了因边界框不准确而导致的误报率。
  • 推理速度:尽管增加了额外的计算量,但整体推理时间仍然保持在一个合理的范围内,适用于实时应用场合。
3. 结论

综上所述,通过对YOLOv8s进行一系列针对性的改进,我们成功地提高了模型在相机陷阱数据集上的泛化性能。未来的工作将继续围绕着如何进一步优化模型架构展开,同时也会关注其他潜在的应用领域,如无人机视角下的行人/车辆检测等。希望这份文档能够为相关领域的研究者提供有价值的参考,并激发更多创新思路。

参考文献

Subedi, A. (2024). Improving Generalization Performance of YOLOv8 for Camera Trap Object Detection. arXiv preprint arXiv:2412.14211. Available at: https://arxiv.org/abs/2412.14211


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值