Langchat平台知识库测试

平台介绍:

LangChat是Java生态下企业级AIGC项目解决方案,集成RBAC和AIGC大模型能力,帮助企业快速定制AI知识库、企业AI机器人。

支持的AI大模型:Gitee AI / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 智谱清言 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型。

开源版本是langchat,商业版本为langchat pro,pro版本支持流程引擎。

模型管理:

模型基于ollama配置的qwen、deepseek等模型。Embedding模型由于不支持Xinference直接采用阿里百炼配置的云端模型。

向量库管理:

向量库支持Redis、Pgvector、Milvus共3个数据库。这里基于pgvector作了测试。

知识库管理:

数据导入支持主流格式的文件导入。文档管理只能进行删除操作。切片管理只可以进行删除操作,不能进行编辑。向量搜索可以对知识库进行召回测试。

AI应用管理配置:

新建一个政务问答的智能体,并进行提示词、知识库、模型等的配置。

知识库问答测试:

回答的都是正确的。缺点是没有对应文件的引用。

总结:

  1. 知识库问答召回来看还是可以的,和dify差不多。
  2. 向量库管理+知识库管理,其实就是dify里面的知识库管理。这样分开设置也许也有优势吧,暂时还没体验到。知识库里面的分段设置、召回设置不像dify丰富。但是默认的chunk切分是优于dify的。
  3. 知识库问答缺少文件出处引用。
  4. 免费版没有流程引擎,pro版才会有。
  5. 支持api方式发布,发布方式没有dify全面多样,但是最核心的api方式有,主打够用。
  6. 模型部署接入不支持xinference,这点还是很不友好。
  7. 知识库迁移问题,应该基于PGSQL、redis就可以做到。
  8. 开源大平台 vs 收费小平台,商业化使用后续颠覆重来的问题。

参考链接:

https://github.com/TyCoding/langchat

LangChat如何接入DeepSeek-R1模型 | LangChat Docs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值