人脸检测之DPM(Deformable Parts Model)

### 目标检测算法发展历程 #### 早期传统方法阶段(2000年以前) 在早期,目标检测主要依赖于手工设计的特征和传统的机器学习方法。例如,Haar特征结合AdaBoost的目标检测算法被广泛应用于面部识别等领域[^2]。 #### Viola-Jones时期(约2001年至2010年间) Viola-Jones(VJ)人脸检测算法标志着一个重要转折点。该算法利用积分图快速计算矩形区域内的像素总和,并通过级联分类器结构实现了高效的实时人脸检测功能[^3]。 #### HOG+SVM与DPM时代(大约始于2005年后) HOG(Histogram of Oriented Gradients)+SVM支持向量机组合成为处理诸如行人检测等问题的有效方案之一;与此同时,可变形部件模型(DPM, Deformable Parts Model)也逐渐兴起,在PASCAL VOC挑战赛上取得了优异成绩。 #### 深度学习革命(自2014年起至今) 随着卷积神经网络(CNNs)性能突破及其硬件加速环境成熟化,基于深度学习的方法迅速取代了之前的手工特征提取方式: - **Two-stage算法**:R-CNN系列(Region-based CNN),包括Fast R-CNN、Faster R-CNN等变体,引入候选框生成机制来提高精度; - **One-stage算法**:YOLOv1~v8 (You Only Look Once), SSD(Single Shot MultiBox Detector)等框架则追求速度与效率之间的平衡,直接预测边界框坐标及类别概率分布。 这些进步不仅极大地提升了目标检测的效果,还推动了计算机视觉领域其他方向的研究与发展。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn model = fasterrcnn_resnet50_fpn(pretrained=True) model.eval() ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值