航迹规划算法——总结

确定性方法

  传统的确定性方法包括,智能搜索算法(A*,D*算法等)、最速下降法、可视图方法、人工势场法、单元分解法、最优控制方法、模拟退火算法、遗传算法等。但是智能搜索方法在高维空间内易出现组合爆炸和局部最优问题;最速下降法需要大量迭代计算且无最优性保证;可视图方法计算复杂且对环境噪声敏感、难以解决高维问题;人工势场法在相近的障碍物面前难以发现路径,在狭窄通道内存在摆动现象,且具有局部最优问题;最优控制方法的模型参数调整复杂、容易发散且要求地形二阶偏导数连续;单元分解法、模拟退火算法和遗传算法的计算复杂度较高。

随机性方法

  随机化航迹搜索方法现有的在线航迹搜索方法大多基于效率较高的随机化算法,该方法在随机采样点的引导下,随机地选择航迹点。
概率路标图算法(Probabilistic RoadMap, PRM),PRM 算法在路标图构造过程中存在多个两点边值问题(two-point Boundary Value Problem,BVP),BVP 问题是指在两点间构造满足约束条件的路径边。PRM 算法在解决静态环境下的航迹搜索问题时效率较高,但由于重规划路标图过程中存在多个 BVP 问题,因此 PRM 算法难以重规划航迹,难以应用于动态或未知环境下。

  针对 PRM 算法中存在的问题,为了解决高维空间微分约束下的快速航迹搜索问题,La Valle 提出了快速扩展随机树算法(Rapidly-exploring Random Tree,RRT),它直接在空间中搜索单条航迹,避免了复杂的空间预处理过程。

小型无人机在线航迹规划框架

  1.模型预测控制(Model Predictive Control,MPC)是典型的边规划、边执行的在线规划框架,它是一种滚动时间窗方法。在局部规划过程中,算法首先更新当前航迹搜索域内的环境信息并在此基础上预测该航迹搜索域内的信息变化趋势,然后根据无人机的运动模型搜索出局部参考航迹,并在航迹的执行过程中根据无人机的运动约束和控制误差等修正航迹,以充分利用实时反馈信息逐步生成全局航迹。

  2.反应控制也是一种在线规划框架,它采用快速迂回策略来躲避动态障碍物,由于它仅使用有限的局部环境信息来构建局部航迹,并且反应控制过程中没有复杂的状态耦合和转移过程,故它的计算复杂度较低。

密集障碍物躲避技术

  障碍物密集环境(obstacle dense environment)是指障碍物形状多样,障碍物间隔较小,存在多条狭窄通道(narrow passages)的环境。狭窄通道是指无人机飞行时的碰撞概率较高的狭窄区域,在此区域必须考虑无人机的飞行误差。
1.RRT
2.Kd Tree(Kd树)

威胁区建模技术

1.静态威胁区建模技术

2.动态威胁区建模技术

运动控制误差处理技术

1.通过扩大航迹与障碍物间隔的低碰撞航迹生成方法,如障碍物膨胀法。障碍物膨胀法是指,向外扩充障碍物边界,以保证结果航迹与真实障碍物间存在一定间隔。

2.误差走廊法建立具有一定宽度的航迹,该宽度由无人机的运动误差确定。

3.Voronoi 图方法首先对空间障碍物进行建模,并为所有障碍物顶点划分Voronoi 图或近邻采样域,然后,算法在各 Voronoi 区域的顶点处寻找航迹点,该方法搜索到的航迹距离障碍物最远。

### 使用Q-Learning算法无人机航迹规划 #### Q-Learning算法简介 Q-Learning是一种无模型的强化学习算法,能够在未知环境中通过试错方式找到最优为策略。该算法适用于离散的状态和动作空间,并能有效地处理不确定性环境中的决策问题[^1]。 对于无人机航迹规划而言,Q-Learning可以通过不断尝试不同的飞路线并评估其优劣来逐步优化路径选择过程。具体来说,每次当无人机处于某一位置(即当前状态S),它会根据已有的经验决定采取何种动A;之后依据所选动作的结果获得即时奖励r(S,A),以及转移到下一个新状态S'后的最大预期收益maxQ(S', A')。最终更新当前位置下的Q值: \[ Q(S, A) = Q(S, A) + \alpha[r(S, A) + \gamma\max Q(S', A') - Q(S, A)] \] 其中α表示学习率,决定了新的信息影响旧有估计的程度;γ则反映了对未来回报的关注度,取值范围通常介于0至1之间[^3]。 #### 应用于无人机的具体实现流程 为了使上述理论框架适应实际应用场景——比如让一架无人驾驶飞机安全高效地穿越障碍物密集区域到达目的地——还需要考虑以下几个方面: - **定义合适的状态表示**:考虑到三维空间内的运动特性,可采用坐标系内各点作为基本单元构建栅格地图,以此表征整个操作域。 - **设定合理的奖惩机制**:接近目标给予正向激励分值,碰撞或偏离既定航线施加惩罚分数,从而引导机器自主探索最佳轨迹方案。 - **初始化参数配置**:包括但不限于折扣因子γ、初始温度T_0等超参设置,这些都将直接影响收敛速度与性能表现。 下面给出一段简单的Python伪代码片段展示这一思路的应用实例: ```python import numpy as np class DroneQLearner: def __init__(self, grid_size=(10, 10, 10)): self.q_table = np.zeros(grid_size + (6,)) def choose_action(self, state): # Choose action based on epsilon-greedy policy def learn(self, s, a, r, s_next): q_predict = self.q_table[s][a] if not done: q_target = r + GAMMA * max(self.q_table[s_next]) else: q_target = r self.q_table[s][a] += ALPHA * (q_target - q_predict) drone = DroneQLearner() for episode in range(MAX_EPISODES): current_state = env.reset() # Reset environment at start of each episode while True: chosen_action = drone.choose_action(current_state) next_state, reward, done = env.step(chosen_action) drone.learn(current_state, chosen_action, reward, next_state) ... ``` 此段代码仅展示了核心逻辑结构的一部分,完整的程序还需加入更多细节如终止条件判断等功能模块才能正常运作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值