文章目录 CiteIntroductionKey Point 1Key Point 2Take home messagesResourcesIDEAS Cite Lin, Jiarong, et al. “R 2 ^ 2 2 LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and Mapping.” IEEE Robotics and Automation Letters 6.4 (2021): 7469-7476. Introduction 本文提出的框架由两部分组成:基于滤波器的里程计和因子图优化。为了保证实时性能, 本文在误差状态迭代卡尔曼滤波框架内对状态进行估计,并通过因子图优化进一步提高整体精度。 Key Point 1 Key Point 2 Take home messages LiDAR失效场景:在可用几何特征较少的情况下,基于lidar的SLAM方法的精度会显著降低甚至失败。 Resources IDEAS