【文献】R2LIVE: A Robust, Real-time, LiDAR-Inertial-Visual tightly-coupled state Estimator and mapping

Cite

Lin, Jiarong, et al. “R 2 ^ 2 2 LIVE: A Robust, Real-Time, LiDAR-Inertial-Visual Tightly-Coupled State Estimator and Mapping.” IEEE Robotics and Automation Letters 6.4 (2021): 7469-7476.

Introduction

  • 本文提出的框架由两部分组成:基于滤波器的里程计和因子图优化。为了保证实时性能, 本文在误差状态迭代卡尔曼滤波框架内对状态进行估计,并通过因子图优化进一步提高整体精度。

在这里插入图片描述

Key Point 1

Key Point 2

Take home messages

  • LiDAR失效场景:在可用几何特征较少的情况下,基于lidar的SLAM方法的精度会显著降低甚至失败。

Resources

IDEAS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值