nvidia系列教程-AGX-Orin can接口调试

12 篇文章 ¥19.90 ¥99.00

目录

前言

一、AGX-Orin can介绍

二、原理图连接

三、系统配置

四、can数据收发

总结​​​​​​​


前言

        NVIDIA Jetson AGX Orin 是一款高性能的嵌入式平台,专为自动驾驶、机器人、物联网和其他需要大量计算能力和人工智能处理的应用设计。Jetson AGX Orin 集成了多个 CAN(Controller Area Network)控制器,允许设备与各种嵌入式系统和工业设备进行实时通信。以下是 AGX Orin CAN 资源的详细介绍。


一、AGX-Orin can介绍

        控制器局域网 (CAN) 是一种车载总线标准,用于微控制器和车辆内设备之间的通信。CAN 总线是一种多启动器串行总线,用于使用基于消息的协议连接车辆内的多个节点。NVIDIA Jetson AGX Orin SOM 支持连接到两个 CAN 网络。

<think>好的,我现在要帮用户解决在Jetson Orin AGX上部署Qwen2-VL的问题。首先,我需要确认用户的需求。Qwen2-VL是阿里云的多模态大模型,支持图像和文本理解,所以用户可能想在这个嵌入式设备上运行视觉和语言结合的AI应用。Jetson Orin AGX属于NVIDIA的边缘计算设备,具有GPU加速能力,但部署大模型需要考虑资源限制。 接下来,我需要思考部署流程。通常,这类部署步骤包括环境准备、模型转换、优化、部署和测试。首先,用户需要配置Jetson的环境,可能包括JetPack SDK、CUDA、TensorRT等。然后,模型可能需要从原始框架(比如PyTorch)转换为ONNX,再转成TensorRT引擎,以利用硬件加速。同时,内存和计算资源的优化是关键,因为大模型参数量大,Jetson的内存可能有限。 然后,我需要考虑Qwen2-VL的具体要求。这个模型可能基于Transformer架构,支持多模态输入。需要查看官方文档是否有针对边缘设备的部署指导,或者是否有开源社区的成功案例。如果没有现成的方案,可能需要自行调整模型结构,比如量化、剪枝,或者使用更小的模型变体。 可能的挑战包括:模型过大导致内存不足,需要量化到FP16或INT8;依赖库的兼容性问题,比如PyTorch的Jetson版本;多线程处理以提升推理速度;以及图像和文本输入的预处理和后处理如何高效实现。 接下来,我需要整理步骤,确保用户能够逐步操作。可能包括安装依赖、下载模型、转换格式、编写推理脚本、测试性能等。同时提醒用户注意JetPack版本、存储空间、散热问题,以及可能的性能瓶颈。 最后,验证步骤很重要,用户需要测试模型的功能是否正常,比如输入图片和文本,查看输出是否符合预期。性能监控工具如jetson_stats可以帮助查看资源使用情况,必要时进行调整优化。 总之,整个过程需要系统性地处理环境配置、模型优化、资源管理和功能测试,确保Qwen2-VL在Jetson Orin AGX上高效稳定运行。</think>在NVIDIA Jetson Orin AGX上部署Qwen2-VL多模态大模型,需结合硬件特性进行优化。以下是分步指南: 一、环境准备 1. 基础系统 $$ sudo apt update && sudo apt upgrade -y $$ - 确认JetPack 5.1.2+已安装(需包含CUDA 11.4+,TensorRT 8.5+) - 检查存储空间:建议预留至少64GB空间 2. Python环境 ```bash sudo apt install python3-pip libopenblas-dev python3 -m pip install --upgrade pip pip3 install torch==2.0.0 torchvision==0.15.1 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2 ``` 二、模型部署 1. 获取Qwen2-VL资源 ```bash git clone https://github.com/QwenLM/Qwen2-VL.git cd Qwen2-VL && pip install -r requirements.txt ``` 2. 模型优化(关键步骤) - 使用TensorRT转换: $$ python3 -m tensorrt.utils.onnx_to_trt --onnx=model.onnx --saveEngine=model.trt --fp16 $$ - 启用Jetson CUDA加速: ```python import torch model = model.half().to('cuda') # FP16量化 ``` 三、内存优化技巧 1. 分块加载技术 ```python from transformers import AutoModel model = AutoModel.from_pretrained("Qwen/Qwen2-VL", device_map="auto", offload_folder="offload") ``` 2. 图像预处理优化 ```python from jetson_utils import cudaImage cuda_img = cudaImage(width=224, height=224) ``` 四、部署验证 1. 基准测试脚本 ```python import time start = time.time() output = model.generate(**inputs) print(f"Inference time: {time.time()-start:.2f}s") ``` 2. 资源监控 ```bash sudo tegrastats --interval 1000 ``` 五、注意事项 1. 推荐使用Qwen2-VL-1.8B-Chat轻量版 2. 保持芯片温度<70℃(可通过加装散热片) 3. 使用SWAP交换空间: $$ sudo fallocate -l 16G /swapfile && sudo chmod 600 /swapfile $$ 六、性能参考 - FP16模式下1.8B模型: - 内存占用:~5.2GB - 推理延迟:~3.8s(512 tokens) - 最大并发:2线程 建议先尝试官方提供的Jetson专用Docker镜像(若有),可减少环境配置复杂度。实际部署时需根据应用场景调整输入分辨率(建议不低于224x224)和文本长度限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

flypig哗啦啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值