激光SLAM——第四节(激光SLAM的前端配准方法)

@[目录]

ICP变种方法

– 第四章 激光的前端配准算法(ICP)

4.1、2、3、4的ICP方法,一个比一个精度高,计算量也大。

点云匹配算法是为了匹配两帧点云数据,从而得到传感器(激光雷达或摄像头)前后的位姿差,即****里程数据。匹配算法已经从最初的ICP方法发展出了多种改进的算法NDT。他们分别从配准点的寻找,误差方程等等方面进行了优化。下面分别介绍:

4.1 ICP匹配方法

点对点的icp,可以称PP-icp

  • Iterative closest point:迭代最近点(最原始的icp算法)
  • 简介:前端匹配(配准),后端优化;套路是固定的,即求解最小二乘解。基于图优化的slam如果做得精度高,那多半是前端配准做得棒,才可以拉开差距
  • 目地:配准两帧点云,求欧式变换(R、t变换);
  • 意义:两个安装方法、角度不同的雷达,对同一个实体看到的样子是不一样的(距离、姿态等),设为两个雷达探知到的同一个实体位姿为A、B,求A、B位姿的变换,(R、t变换、欧式变换问题
  • 两帧点云集合X、P:

图片

– 4.1.1 已知对应解的求解方法–证明

  • 一般是没办法不迭代就知道对应解的;

图片

勘误:假设矩阵A为正定对称矩阵

图片

– 4.1.2 未知对应点的求解方法

笔记的3.2.4同此;

迭代最近点求解流程(ICP通用方法):

  • 1、寻找对应点(需要初始输入的R、t),由R、t求‘对应点’
  • 2、根据对应点,再求解进一步的R、t,由‘对应点’求解R、t
  • 3、对点云进行转换,计算误差;
  • 4、不断重复123点,迭代求解,直到误差小于某阈值;

将匹配的方法求解成EM算法思想;

图片

4.2 PL-ICP匹配方法

后面的ICP的优化方法,都是基于这个优化思想。

  • PL:point to line
  • 示意图:
    • a黄色表示实际曲线,蓝色表示激光采样的点;黑色表示和黄色近似的‘曲面’。
    • b是点对点,势场是圆,往四周扩展递增,和实际不符合;
    • c是点对线的势场模型,势场都是平行的,往外递增,比较符合实际。

图片

– 4.2.1基本思想:

  • 1、激光点是对实际环境的曲面的离散采样;
  • 2、重要的不是激光点,而是隐藏在激光点中的曲面;
  • 3、最好的误差尺度为当前的激光点到实际曲面的距离,关键的问题在于如何恢复曲面
  • 4、PL-ICP的解答思路:用分段线性的方法来对实际曲面进行近似,从而定义当前帧激光点到曲面的距离

– 4.2.2 数学描述:

  • 目标函数:表示点到曲面的距离,即点到直线的距离

图片

– 4.2.3 求解方法:

  • 流程:

1、把当前帧的数据根据初始位姿投影到参考帧坐标系下;

2、对于当前帧的点i,在参考帧中找到最近的两个点(j1,j2)****,因为两点确定一线

3、计算直线误差,并去除误差过大的点。

4、代入最小化误差函数求解,点到直线的误差。图片

图片

– 4.2.4 PL-ICP和ICP的区别

图片

4.3 NICP匹配方法

  • **N:normal **法向量

简介:原始的论文是运行在3D激光中的,不过变到2D是很容易的。

目前在开源领域最好的ICP方法;

– 4.3.1 基本思路:

1、替换了pp-icp的欧式最近距离特征。

2、充分利用曲面的特征来对错误的点匹配进行滤除,主要的特征为法向量和曲率

3、误差项除了考虑对应点的欧式距离之外,同时还考虑对应点法向量的角度差。(有利于R旋转矩阵的求解,精度更高**;R比t的精度要求高**)

图片

– 4.3.2 数学描述

图片

– 4.3.3 法向量和曲率计算

高斯分布,描述点云的空间分布特性,即usi;

图片

– 4.3.4 点匹配规则:

1、杂点不匹配

图片

J的求解,泰勒展开;LM迭代求解收敛

图片

– 4.3.5 算法流程:

图片

4.4 IMLS-ICP匹配方法

  • IMLS:隐式的移动最小二乘;
    • Implicit 隐式,由于实际的曲面的显式方程难以求出,实际是求点到曲线的距离,拟合一曲面。
    • Moving 滑动窗口法
    • Least Square 最小二乘法求解;

理论上最好的算法,因为对实际环境的拟合是最真实的,精度最高。

目前没有开源的slam的ros算法包;

曲面重建约准确,对真实世界描述约准确,匹配的精度就越高。

步骤:

1、选取参考点;

2、曲面重构;

– 4.4.1 ICP和IMLS的对比:

1、ICP收敛到了一团点上,收敛结果不稳定;

2、IMLS-ICP收敛到了曲线上,符合真实情况,拟合结果稳定,误差尺度更好

图片

基本思想解释:

1、选择代表性点:选择信息量丰富的点,结构化的点。去除不好的杂点,因为激光常常会出现点分布不均匀的情况,可能会让最终匹配结果偏向特征点丰富的一边,令匹配失真;

– 4.4.2 代表点的选择策略:

  • 2D激光:选择直线;
  • 3D激光:选择平面;

图片

解释:

1、选择结构化的点,具有良好的曲率和法向量,选择均衡,在曲面两侧数量基本平衡

2、角度不可观一般遇不到,除非是一个非常圆的环境,没有别的特征,难以分辨方位。

– 4.4.3 曲面重建方法

图片

– 4.4.4 匹配求解

  • 计算步骤:
    • 当前帧中的一点xi到曲面的距离图片
    • Pk中离点xi最近的点的法向量为ni;
    • 则点xi在曲面上的投影yi为:yi=xi-Ipk(xi)*ni
    • 点xi和点yi为对应的匹配点:图片

图片

基于优化的方法

– 第五章 激光前端配准算法(基于优化/势场方法)

以下为基于势场的方法,与ICP算法不一样,以下算法都不需要匹配点;简单来说就是对某段连续的激光点(障碍物)进行高斯平滑/膨胀,再用分数评价离激光点(障碍物)越近,得分越高(障碍物本身得分为零),人为地构造出一个得分势场; 这样只要比较得分即可,不需要匹配点。

  • 基本数学概念

a.梯度gradient,由多元函数的各个偏导数组成的向量

以二元函数为例,其梯度为:

图片

b.黑森矩阵Hessian matrix,由多元函数的二阶偏导数组成的方阵,描述函数的局部曲率,以二元函数为例。可用迭代法求解,地址

图片

c.雅可比矩阵 Jacobian matrix,是多元函数一阶偏导数以一定方式排列成的矩阵,体现了一个可微方程与给出点的最优线性逼近。以二元函数为例,

图片

如果扩展多维的话F: Rn-> Rm,则雅可比矩阵是一个m行n列的矩阵

图片

雅可比矩阵作用:如果P是Rn中的一点,F在P点可微分,那么在这一点的导数由JF§给出,在此情况下,由F§描述的线性算子即接近点P的F的最优线性逼近

图片

d.残差 residual,表示实际观测值估计值(拟合值)之间的差值

e. 协方差矩阵

资料:

http://www.360doc.com/content/16/0121/13/13800296_529534763.shtml

协方差矩阵始终是一个对称矩阵,其对角线是方差非对角线是协方差

图片

图片

5.1高斯牛顿优化方法

例如:hector-slam

算法解析:https://blog.csdn.net/qq_39521554/article/details/79919041

** 高斯牛顿法解决非线性最小二乘问题的最基本方法,并且它只能处理****二次函数**

– 5.1.1 原理图示及数学描述

描述:此图表示红色最高点为选取的初始值,取不同的初始解,会得到不一样的结果。(非凸优化、初始值敏感)。下图就是人工势场。图片

图片

给定目标函数E(T):

图片

  • 上图公式

1、目标是求T(机器人位姿)的极小值;

2、[1-M(Si(T))]²,表示势场(其中Si表示得分,M(x)表示得到坐标X的地图占用概率),即表示在障碍物周围一定区域内,得分表示为1,超过区域表示为0,这就有了一个人工势场( [0, 1]闭区间 )。

3、生成T的坐标矩阵,将T全部转换到三维空间中。

– 5.1.2 求解方法步骤

图片

  • pi表示当前激光帧的第i个激光点参考坐标/势场坐标;
  • M(Si(T))为非线性函数;一阶泰勒展开得线性函数,化简

图片

  • M(Si(T))是离散的,无法求导,故需要插值。

图片

  • 地图的插值方法

1、地图双线性插值

图片

图片

如上图,Pm为激光点,已知Pij四点栅格值,且知道其各自的势场值,就可用双线性插值方法推出Pm的势场值;

  • 拉格朗日插值法

一般来说多项式插值就是求n-1个线性方程的解,拉格朗日插值即是基于此思想。拉格朗日创造性的避开的方程组求解的复杂性,引入“基函数”这一概念,使得快速手工求解成为可能。

定义:求作<=n 次多项式 pn(x),使满足条件pn(xi)= yi,i = 0,1,…,n.这就是所谓拉格朗日( Lagrange)插值;

图片

5.2 NDT方法

主要用在3D-slam算法当中。

– 5.2.1 基本思想

NDT算法的基本思想是先根据参考数据(reference scan)来构建多维变量的正态分布,如果变换参数能使得两幅激光数据匹配的很好,那么变换点在参考系中的概率密度将会很大。因此,可以考虑用优化的方法求出使得概率密度之和最大的变换参数,此时两幅激光点云数据将匹配的最好。

Normal Distance Transform 正态分布变换

图片

1、把空间用cel进行区分

图片

2、用高斯分布区代替势场,膨胀为符合正态分布的概率密度区域,形成一个天然分段连续的势场

把落入cell的点都认为符合拟合的高斯分布。

图片

– 5.2.2 数学描述

图片

图片

图片

– 5.2.3 算法流程

图片

图片

图片

NDT算法的C++实现:

https://blog.csdn.net/adamshan/article/details/79230612

5.3 相关匹配方法及分支定界加速

CSM、BB

例如:cartographer。

CSM作用:先用相关性扫描匹配(CSM)给一个初值,然后构造一个最小二乘问题;用激光末端点匹配取到占据栅格地图中的值,获得得分,取得分最高的作为初值。加上多分辨率计算可以加速,并且获得分辨率意义下的最优解

相关性扫描匹配的思路其实非常简单。想象给定一个栅格地图,再给定当前帧的点云,怎样才能知道激光雷达所在的位置呢?最简单的办法,**把激光雷达放在地图的每个格子上,看在这个位置时,**点云是否与地图重合,重合程度最高的位置就是激光雷达的真实位姿。

  • 基本概念

枚举似然场中的每一个位姿,选择最好的。

图片

– 5.3.1 算法流程

图片

1、构造似然场,即对其进行高斯模糊;

2、指定一个小车的位姿范围,例如1m x 1m,30度范围内,分成许多位姿,计算每一个位姿的得分,取最优解。

3、位姿搜索

  • 位姿搜索

图片

1、暴力搜索

三层嵌套for循环,大量三角函数计算。

2、预先投影搜索

把1的顺序调转。

3、多分辨率搜索

因为25cm和2.5cm的差距,保证不了最优位姿在栅格内,所以有时候会得到一个次优解。分支定界可能最优。

5.4 分支定界算法

– 5.4.1 基本思想

图片

图片

– 5.4.2 分支定界的加速作用

图片

图片

补充

相关性扫描匹配CSM与分支限界加速:
https://blog.csdn.net/weixin_35695879/article/details/103511418
Google Cartographer SLAM 原理 (Real-Time Loop Closure in 2D LIDAR SLAM 论文详细解读):
https://blog.csdn.net/weixin_36976685/article/details/84994701

前言

在激光SLAM中,相关性扫描匹配可是重点中的重点,而分支限界加速更是大大提高了它的实时性。本文就来详细解读一下其中的奥秘。

激光SLAM前端

既然是SLAM,那么通常都会分为前端和后端。前端充当里程计的角色,比如我们熟知的VO(视觉里程计)和VIO(视觉惯性里程计)。激光SLAM也需要前端,对于每一帧点云,通常是使用所谓的扫描匹配(scan-match)方法进行位姿估计。

简单地说,扫描匹配就是想办法把两帧点云对齐,对齐过程中的旋转和平移就是两帧之间的相对位姿。这是最最简单的方式,实际中,为了提高鲁棒性,通常把当前帧点云和地图进行扫描匹配,更不容易出错。

扫描匹配的实现方式有两种,第一种是相关性扫描匹配,第二种是基于优化的扫描匹配。第一种思路简单,但有一些复杂的细节,而第二种则是构建非线性最小二乘优化问题并求解。实际中,通常是两种方法同时用,先用相关性扫描匹配求初值,再用基于优化的扫描匹配进一步优化。

相关性扫描匹配

相关性扫描匹配的思路其实非常简单。想象给定一个栅格地图,再给定当前帧的点云,怎样才能知道激光雷达所在的位置呢?最简单的办法,把激光雷达放在地图的每个格子上,看在这个位置时,点云是否与地图重合,重合程度最高的位置就是激光雷达的真实位姿。

显然,这个方法就是暴力搜索。虽然肯定搜得出来,但速度比较慢。想要加速,就得祭出我们的算法神器了——分支限界。

分支限界加速

如果上过计算机算法课,就一定接触过分支限界法。这是一个通用的算法,一般用于搜索离散空间的最优解。我们这里的解空间显然就是一个离散的空间,而且可以很方便地按照地图分辨率构造树形结构。

举例来说,假设有一张4×4的地图,我们降低其分辨率,每2×2的格子合并成一个,得到一张2×2的地图,再降低其分辨率,得到一张1×1的地图。这样,地图被分成了三层,如下图所示。

在这里插入图片描述

有了多分辨率地图后,我们先在第二层的解空间中搜索,找到最优的位姿对应的格子。然后再在该格子中搜索下一层中对应的小格子,找到最优的位姿。

这么简单?当然不是。请注意,上面的做法是完全错误的。它有两个问题。首先,在第二层的格子中搜索最优的位姿,实际上是把位姿放在格子的中心,计算其点云的评分(即hit点的评分之和,下文直接称其为位姿的评分)。但是格子中心的位姿并不能代表格子其它位置的位姿,很有可能格子中心的评分低于其它位置的评分,那么第二层最优的格子中并不一定包含第三层最优的格子。怎么办呢,我们可以想办法让格子中心的评分高于其所有子格子的评分,此时格子的评分是其子格子的评分上界,这样就可以保证子格子的最高评分体现在父格子中。

但是,此时又引入了第二个问题,虽然格子的评分是其子格子的评分上界,但并非上确界。也就是说,可能存在格子的评分很高,但其所有子格子的评分都很低的情况。这样的话,我们仍然无法选取最大评分格子的同时抛弃其它格子。

剩下的选择就只有一个,绝不抛弃任何一个可能存在最优解的格子,只抛弃那些绝对不存在最优解的格子。这正是分支限界的思想。

具体实现的时候,先从根节点开始遍历,把它拆分成4个子格子。这4个子格子分别计算评分,并由高到低排序。从中选出分数最高的格子,进一步拆分成4个子格子。假设这4个子格子已经到了叶子节点,也就是达到了真实地图的分辨率。此时计算出的4个子格子的评分代表了真实的位姿评分(只有叶子节点的评分是真实评分,其它格子的评分都是上界),找出其最大值,记作best_score。以上过程,我们体会了分支是如何实现的。接下来,该轮到限界出场了。第二层的格子还有3个未曾探索,我们当然是选择最大的那个开始分支。但别急,先看一下它的评分是否大于best_score,如果是,继续分支,如果否,就可以直接剪枝了,抛弃这个格子及其所有子格子。因为格子的评分代表了其子格子评分的上界,如果上界都小于best_score,就不可能再有子格子的评分大于它了。按照如此方法,大刀阔斧地剪枝即可。注意,当遇到评分大于best_score的叶子节点时,记得更新best_score,这样可以更快地缩小搜索空间。

讲到这里,你是不是有点摸不着头脑?别怕,因为这里有个最最关键的问题我还没有解释,也就是如何能够快速计算出格子评分的上界。

计算评分上界

先说一个平凡方法。既然要算子格子评分的上界,那就把每一个子格子拿出来算一遍,求个最大值。对了,子格子还会有子格子,所以这是个递归运算,直到把叶子节点都算出来才行。那这跟直接暴力搜索就没什么两样了,不行不行。

我们还是得追求在O(1)时间复杂度内求出格子的评分。想了想,之所以叶子节点评分可以在O(1)时间内求出,是因为它是直接在地图中查表得到的(严谨地说,是通过查其所有hit点的评分再求和得到的,但由于hit点数量固定,可以认为时间复杂度是O(1))。但我们构造的多分辨率地图能不能也维护类似的概率表格,使得格子的评分可以在对应分辨率地图中查询得到呢?

多么机智的想法啊!试想,把地图中每个格子的概率用其附近区域内的最大概率代替。这样的话,直接查对应分辨率地图就可以得到格子的评分,因为这个评分已经事先在附近区域中取了最大值。

上面提到的“某个范围”,需要与地图分辨率保持一致。也就是说,越低分辨率的地图(也就是越高层的地图),应该在越大的区域求最大值,其大小与当前分辨率下格子的大小一致。

不同分辨率的地图需要事先计算好,大概长这个样子:
在这里插入图片描述

可以看到,越靠后的地图分辨率越低,格子中的概率越接近1,也就代表了越高的上限。这与我们的直观理解是一致的。

总结

说实话,本文内容非常抽象,又限于笔者画图能力太差,实在画不出合适的插图,只能靠读者自己想象了。

不得不说,除非事先有所了解,否则读了之后可能还是一头雾水。所以,如果你对激光SLAM还没有整体的了解,还不知道什么是点云、什么是地图、如何计算概率。那么请关注一下文末的参考资料,相信会对你有所帮助。

相关性扫描匹配及分枝限界加速在谷歌Cartographer的论文中有详细介绍,建议大家去看一看。

参考资料

Real-Time Loop Closure in 2D LIDAR SLAM Wolfgang Hess, Damon Kohler, Holger Rapp, Daniel Andor

  • 11
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
激光SLAM前端的ICP(Iterative Closest Point)是一种常用的点云配准算法,用于估计机器人的运动轨迹。在ICP算法,首先需要找到两个点云之间最匹配的点对,然后通过迭代的方式更新机器人的位姿来最小化点对之间的距离误差。 ICP算法的基本思想是通过最小化点到点或点到线的距离来寻找最佳的匹配。在激光SLAM,点云数据表示了机器人周围的环境信息。通过将当前帧的点云与上一帧的点云进行匹配,ICP算法可以估计机器人的位姿变换。 在ICP算法,通过迭代的方式不断优化位姿估计的准确度。每一次迭代,都通过计算当前帧的点在上一帧的最近邻点,并根据这些点之间的距离来更新位姿估计。通过多次迭代,最终可以得到一个相对准确的位姿估计。 然而,ICP算法也存在一些问题。例如,在优化的ICP,由于迭代的次数较少,可能导致结果比使用SVD进行配准的结果更差。因此,在使用ICP算法进行激光SLAM前端时,需要进行进一步的检查和优化,以确保得到较为准确的位姿估计结果。同时,还有其他类型的SLAM前端算法,如NDT、SICP和GICP等,可以根据具体应用场景选择合适的算法进行使用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [激光SLAM前端配准算法](https://blog.csdn.net/weixin_46777885/article/details/124793241)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [激光SLAM前端方法比较](https://blog.csdn.net/weixin_44035919/article/details/125003220)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值