如何让智谱清言 API 一次性返回完整回答?避免逐字输出的正确用法

一次性获取完整回答:智谱清言 API 高效调用指南

1. 介绍

智谱清言 API 是一个强大的 AI 语言模型接口,支持对话生成、搜索增强等功能。API 提供两种输出方式:

  • 流式输出(stream=True):逐字返回内容,适用于打字机效果或实时交互。
  • 非流式输出(stream=False):一次性返回完整回答,更加直观。

本文将重点讲解如何一次性获取完整回答,避免逐字返回的问题,并提供代码示例与常见错误解决方案。

2. 获取 API Key

  1. 访问 智谱清言 API 控制台
  2. 点击 立即体验,在右上角找到 查看代码 按钮,获取 API Key。
  3. 如果无法看到示例代码,尝试 最大化窗口

(最小化页面)
在这里插入图片描述
(最大化页面)
在这里插入图片描述

👉 直接访问 API Key 管理页面 申请新 Key,并查看最近的使用记录。

3. 安装 SDK

在使用 API 之前,需要安装 zhipuai Python SDK:

pip install zhipuai

4. 代码示例

官方提供的代码如下:

from zhipuai import ZhipuAI

client = ZhipuAI(api_key="your api key")

response = client.chat.completions.create(
    model="glm-4-flash",
    messages=[
        {"role": "system", "content": "你是一个乐于解答各种问题的助手,你的任务是为用户提供专业、准确、有见地的建议。"},
        {"role": "user", "content": "你好"}
    ],
    top_p=0.7,
    temperature=0.95,
    max_tokens=1024,
    tools=[{"type":"web_search","web_search":{"search_result":True}}],
    stream=True
)

for trunk in response:
    print(trunk)

5.1 运行结果分析

此代码的 stream=True 使 API 以流式输出方式返回结果,每个 ChatCompletionChunk 代表一个 token 输出。例如,输出可能是:

ChatCompletionChunk(id='xxx', choices=[Choice(delta=ChoiceDelta(content='你好', role='assistant', tool_calls=None, audio=None), finish_reason=None, index=0)], created=xxxxxx, model='glm-4-flash', usage=None, extra_json=None)
ChatCompletionChunk(id='xxx', choices=[Choice(delta=ChoiceDelta(content='👋!', role='assistant', tool_calls=None, audio=None), finish_reason=None, index=0)], created=xxxxxx, model='glm-4-flash', usage=None, extra_json=None)

在这里插入图片描述

这种方式适用于实时打字机效果(如聊天机器人),但对于普通应用,分块输出可能显得不直观。

🚨 问题stream=True 会让 API 逐字返回,输出过程显得不直观。

5.2 ✅ 解决方案:修改为非流式输出

如果希望 API 直接返回完整的回答,可设置 stream=False 或移除该参数:

response = client.chat.completions.create(
    model="glm-4-flash",
    messages=[
        {"role": "system", "content": "你是一个乐于解答各种问题的助手,你的任务是为用户提供专业、准确、有见地的建议。"},
        {"role": "user", "content": "你好"}
    ],
    top_p=0.7,
    temperature=0.95,
    max_tokens=1024,
    tools=[{"type":"web_search","web_search":{"search_result":True}}]
)

print(response.choices[0].message.content)

🔹 运行结果

你好👋!很高兴见到你,有什么可以帮助你的吗?

非流式输出的优点

  • 直接获取完整回答,无需拼接。
  • 更适合批量处理和标准 API 调用。

注意:非流式输出可能会稍慢,在 API 处理完之前不会返回任何内容,请耐心等待。

6. 可能遇到的问题及解决方案

6.1 网络连接错误

错误信息

zhipuai.core._errors.APIConnectionError: Connection error.

解决方案

  • 检查网络连接。
  • 确保未开启影响 API 访问的代理。

6.2 认证失败(401 错误)

错误信息*:

zhipuai.core._errors.APIAuthenticationError: Error code: 401, with error text {"error":{"code":"401","message":"令牌已过期或验证不正确!"}}

解决方案

  • 确保 ZhipuAI(api_key="xxx") 中正确填写了 API Key。
  • 若 Key 失效,可在 API Key 管理页面 申请新的 Key。

7. 流式 vs 非流式输出对比

方式适用场景优点缺点
流式 (stream=True)实时交互,如聊天机器人逐字返回,响应迅速需要手动拼接,难以一次性获取完整内容
非流式 (stream=False)普通 API 调用直接返回完整结果,适合批量处理需要等待完整结果返回

8. 结论

智谱清言 API 提供了流式和非流式输出选项,选择合适的方式可以优化用户体验。

  • 💡如果希望逐字显示,提高交互性,可以使用 stream=True
  • 💡如果希望一次性获得完整结果,提高可读性,则应使用 stream=False

掌握这一技巧,可以让你的 API 调用更加高效,轻松获取完整的 AI 生成内容!

### 如何使用 DeepSeek 模型实现逐字输出效果 要实现逐字输出的效果,可以利用 DeepSeek 的流式生成能力(Streaming Generation),这允许程序逐步接收并显示模型生成的内容。以下是具体方法和示例: #### 流式生成的概念 流式生成是一种技术,在这种模式下,AI 模型不会一次性返回完整的响应内容,而是分批次或字符级地发送数据给客户端[^1]。 #### 使用 Python 和 DeepSeek 实现逐字输出的代码示例 以下是一个基于 `deepseek` 库的简单例子,展示如何通过流式接口获取逐字输出效果: ```python import time from deepseek import generate_with_streaming, set_api_key set_api_key('your-api-key') # 替换为您的实际 API 密钥 def stream_text(prompt, model="deepseek-chat"): """ 逐字打印由 DeepSeek 模型生成的结果。 参数: prompt (str): 输入提示文本。 model (str): 要使用的 DeepSeek 模型名称,默认为 'deepseek-chat'。 返回: None """ generator = generate_with_streaming(model=model, messages=[{"role": "user", "content": prompt}]) for chunk in generator: content = chunk["choices"][0]["delta"].get("content", "") if content: print(content, end='', flush=True) # 逐字输出到控制台 time.sleep(0.1) # 控制输出速度 # 示例调用 stream_text("请描述一下人工能的发展历程。") ``` 上述代码中引入了 `time.sleep()` 函数来模拟人类阅读的速度,从而达到更自然的逐字输出体验。 #### 结合前端框架的应用场景 如果希望在 Web 前端项目中应用此功能,则可以通过 WebSocket 或其他实时通信协议将服务器上的流式数据传递至浏览器端,并动态更新 DOM 元素中的内容。例如,在 Vue.js 中可参考如下方式构建交互组件[^2]: ```vue <template> <div id="output"> {{ output }} </div> </template> <script> export default { data() { return { output: '', }; }, methods: { async fetchStreamedResponse(prompt) { const response = await fetch('/api/generate', { method: 'POST', body: JSON.stringify({prompt}) }); const reader = response.body.getReader(); while(true){ const {done,value}=await reader.read(); if(done){break;} let decodedString=new TextDecoder().decode(value); this.output +=decodedString; console.log(this.output); // Debugging purposes only. } } }, }; </script> ``` 以上片段展示了如何从后端拉取流式的 AI 文本回复,并将其追加到页面指定区域上。 #### 注意事项 - **性能优化**:对于大规模部署环境下的高并发请求,请考虑缓存机制以及负载均衡策略。 - **安全性保障**:确保传输过程中敏感信息得到妥善保护,比如采用 HTTPS 加密连接等措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值