自然语言处理库——Gensim之Word2vec

        Gensim(http://pypi.python.org/pypi/gensim)是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。 主要用于主题建模和文档相似性处理,它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法。Gensim在诸如获取单词的词向量等任务中非常有用。

1. gensim概述

使用Gensim训练Word2vec十分方便,训练步骤如下:

        1)将语料库预处理:一行一个文档或句子,将文档或句子分词(以空格分割,英文可以不用分词,英文单词之间已经由空格分割,中文预料需要使用分词工具进行分词,常见的分词工具有StandNLP、ICTCLAS、Ansj、FudanNLP、HanLP、结巴分词等);

        2)将原始的训练语料转化成一个sentence的迭代器,每一次迭代返回的sentence是一个word(utf8格式)的列表。可以使用Gensim中word2vec.py中的LineSentence()方法实现;

        3)将上面处理的结果输入Gensim内建的word2vec对象进行训练即可:

from gensim.models import Word2Vec 

sentences = word2vec.LineSentence('./in_the_name_of_people_segment.txt') 
# in_the_name_of_people_segment.txt 分词之后的文档

model = Word2Vec(sentences , size=100, window=5, min_count=1, workers=4)

2. gensim word2vec API概述

        在gensim中,word2vec 相关的API都在包gensim.models.word2vec中。和算法有关的参数都在类gensim.models.word2vec. Word2Vec中。算法需要注意的参数有:

class Word2Vec(utils.SaveLoad):
    def __init__(
            self, sentences=None, size=100, alpha=0.025, window=5, min_count=5,
            max_vocab_size=None, sample=1e-3, seed=1, workers=3, min_alpha=0.0001,
            sg=0, hs=0, negative=5, cbow_mean=1, hashfxn=hash, iter=5, null_word=0,
            trim_rule=None, sorted_vocab=1, batch_words=MAX_WORDS_IN_BATCH):
  • sentences:可以是一个list,对于大语料集,建议使用BrownCorpus,Text8Corpus或lineSentence构建。
  • size:是指词向量的维度,默认为100。这个维度的取值一般与我们的语料的大小相关,如果是不大的语料,比如小于100M的文本语料,则使用默认值一般就可以了。如果是超大的语料,建议增大维度。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
  • window:窗口大小,即词向量上下文最大距离,这个参数在我们的算法原理篇中标记为c。window越大,则和某一词较远的词也会产生上下文关系。默认值为5。在实际使用中,可以根据实际的需求来动态调整这个window的大小。如果是小语料则这个值可以设的更小。对于一般的语料这个值推荐在[5,10]之间。个人理解应该是某一个中心词可能与前后多个词相关,也有的词在一句话中可能只与少量词相关(如短文本可能只与其紧邻词相关)。
  • min_count: 需要计算词向量的最小词频。这个值可以去掉一些很生僻的低频词,默认是5。如果是小语料,可以调低这个值。可以对字典做截断, 词频少于min_count次数的单词会被丢弃掉。
  • negative:即使用Negative Sampling时负采样的个数,默认是5。推荐在[3,10]之间。这个参数在我们的算法原理篇中标记为neg。
  • cbow_mean: 仅用于CBOW在做投影的时候,为0,则算法中的x_{w}为上下文的词向量之和,为1则为上下文的词向量的平均值。在我们的原理篇中,是按照词向量的平均值来描述的。个人比较喜欢用平均值来表示x_{w},默认值也是1,不推荐修改默认值。
  •  iter: 随机梯度下降法中迭代的最大次数,默认是5。对于大语料,可以增大这个值。
  • alpha: 是初始的学习速率,在训练过程中会线性地递减到min_alpha。在随机梯度下降法中迭代的初始步长。算法原理篇中标记为η,默认是0.025。
  • min_alpha: 由于算法支持在迭代的过程中逐渐减小步长,min_alpha给出了最小的迭代步长值。随机梯度下降中每轮的迭代步长可以由iter,alpha, min_alpha一起得出。这部分由于不是word2vec算法的核心内容,因此在原理篇我们没有提到。对于大语料,需要对alpha, min_alpha,iter一起调参,来选择合适的三个值。
  • max_vocab_size: 设置词向量构建期间的RAM限制,设置成None则没有限制。
  • sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)。
  • seed:用于随机数发生器。与初始化词向量有关。
  • workers:用于控制训练的并行数。

3. gensim  word2vec实战

3.1 例子1

import os
import numpy as np
import nltk
import datetime as dt
from keras.models import Sequential, load_model
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from gensim.models import Word2Vec


# 1.文本读入
# (1)加载文本
raw_text = ''
# os.listdir()方法用于返回指定的文件夹包含的文件或文件夹的名字的列表
for file in os.listdir('./input/'): 
    if file.endswith(".txt"):
        raw_text += open("./input/" + file, errors='ignore').read() + '\n\n'
raw_text = raw_text.lower()

# (2)加载punkt句子分割器
sentensor = nltk.data.load('tokenizers/punkt/english.pickle')  
# <nltk.tokenize.punkt.PunktSentenceTokenizer at 0x16cc42020f0>

# (3)对句子进行分割:将文章分割为句子列表
sents = sentensor.tokenize(raw_text)   # 句子列表['句子1.','句子2.'...]
corpus = []

# (4)分词word tokenize:将句子分割为单词列表
for sen in sents:
    corpus.append(nltk.word_tokenize(sen))   
# 单词列表[['sexes', 'similar', '.'],['family', 'hirundinidae', '.'],...]

# 2.构建词向量:W2V
w2v_model = Word2Vec(corpus, size=128, window=5, min_count=3, workers=4)   # 128维的词向量

# 3. 处理我们的training data,把源数据变成一个长长的x,好让LSTM学会predict下一个单词
raw_input = [item for sublist in corpus for item in sublist]   
# 将corpus的二维变为一维['sexes', 'similar', '.','family', 'hirundinidae', '.',...]

text_stream = []

vocab = w2v_model.wv.vocab   # 字典dict:获取词向量中每个单词
   '''
       {'project': <gensim.models.keyedvectors.Vocab at 0x1be2f656048>,
        'gutenberg': <gensim.models.keyedvectors.Vocab at 0x1be2f656080>,
        "'s": <gensim.models.keyedvectors.Vocab at 0x1be2f6560b8>,...}
   '''

# 将raw_input中在w2v_model词向量中的单词添加到text_stream
for word in raw_input:
    if word in vocab:
        text_stream.append(word)     

# 4. 构造训练测试集:窗口化,处理成LSTM的输入格式
seq_length = 10
x = []
y = []
for i in range(0, len(text_stream) - seq_length):
    given = text_stream[i:i + seq_length]
    predict = text_stream[i + seq_length]
    x.append(np.array([w2v_model[word] for word in given]))   # 将每个单词转换为词向量 
    y.append(w2v_model[predict])

# len(w2v_model[given[0]])=128  w2v_model[word]为word对应的词向量

# 5. ①将input的数字表达(w2v),变成LSTM需要的数组格式: [样本数,时间步伐,特征],
#    ②对于output,我们直接用128维的输出
x = np.reshape(x, (-1, seq_length, 128))
y = np.reshape(y, (-1, 128))

# 6. LSTM模型构建
model = Sequential()
model.add(LSTM(256, dropout_W=0.2, dropout_U=0.2, input_shape=(seq_length,128)))
model.add(Dropout(0.2))
model.add(Dense(128, activation='sigmoid'))
model.compile(loss='mse', optimizer='adam')

# 7.跑模型
model.fit(x, y, nb_epoch=30, batch_size=2048)
save_fname = os.path.join('./', '%s-e%s-3.h5' % (dt.datetime.now().strftime('%Y%m%d-%H%M%S'),str(50)))
model.save(save_fname)

# 8. 测试
# ①
def predict_next(input_array):
    x = np.reshape(input_array, (-1, seq_length, 128))
    y = model.predict(x)
    return y

def string_to_index(raw_input):
    raw_input = raw_input.lower()
    input_stream = nltk.word_tokenize(raw_input)
    res = []
    for word in input_stream[(len(input_stream)-seq_length):]:
        res.append(w2v_model[word])
    return res

def y_to_word(y):
    word = w2v_model.most_similar(positive=y, topn=1)  # 获取单个词相关的前n个词语
    return word
# ②
def generate_article(init, rounds=30):
    in_string = init.lower()
    for i in range(rounds):
        n = y_to_word(predict_next(string_to_index(in_string)))
        in_string += ' ' + n[0][0]
        # print('n[0]:', n[0])  =  ('curiosity', 0.7301754951477051)
        print('n[0][0]:', n[0][0])
    return in_string

# ③
# init = 'Language Models allow us to measure how likely is, which is an important for Machine'
init1 = 'As I went in to see the famous Booth Collection, a thought of the bird I have just described came into my'
article1 = generate_article(init1)

 word2Vec 获取训练好后所有的词:

      在gensim 1.0.0 以前的版本可以使用:model.vocab

     在 gensim 1.0以后的版本使用:model.wv.vocab

3.2 例子2

        选择的《人民的名义》的小说原文作为语料,语料原文在这里

  完整代码参见:github: https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/word2vec.ipynb

  拿到了原文,我们首先要进行分词,这里使用结巴分词完成。在中文文本挖掘预处理流程总结中,我们已经对分词的原理和实践做了总结。因此,这里直接给出分词的代码,分词的结果,我们放到另一个文件中。代码如下, 加入下面的一串人名是为了结巴分词能更准确的把人名分出来。

# -*- coding: utf-8 -*-

import jieba
import jieba.analyse

jieba.suggest_freq('沙瑞金', True)
jieba.suggest_freq('田国富', True)
jieba.suggest_freq('高育良', True)
jieba.suggest_freq('侯亮平', True)
jieba.suggest_freq('钟小艾', True)
jieba.suggest_freq('陈岩石', True)
jieba.suggest_freq('欧阳菁', True)
jieba.suggest_freq('易学习', True)
jieba.suggest_freq('王大路', True)
jieba.suggest_freq('蔡成功', True)
jieba.suggest_freq('孙连城', True)
jieba.suggest_freq('季昌明', True)
jieba.suggest_freq('丁义珍', True)
jieba.suggest_freq('郑西坡', True)
jieba.suggest_freq('赵东来', True)
jieba.suggest_freq('高小琴', True)
jieba.suggest_freq('赵瑞龙', True)
jieba.suggest_freq('林华华', True)
jieba.suggest_freq('陆亦可', True)
jieba.suggest_freq('刘新建', True)
jieba.suggest_freq('刘庆祝', True)

with open('./in_the_name_of_people.txt') as f:
    document = f.read()
    
    #document_decode = document.decode('GBK')
    
    document_cut = jieba.cut(document)
    #print  ' '.join(jieba_cut)  //如果打印结果,则分词效果消失,后面的result无法显示
    result = ' '.join(document_cut)
    result = result.encode('utf-8')
    with open('./in_the_name_of_people_segment.txt', 'w') as f2:
        f2.write(result)

        拿到了分词后的文件,在一般的NLP处理中,会需要去停用词。由于word2vec的算法依赖于上下文,而上下文有可能就是停词。因此对于word2vec,我们可以不用去停词。

  现在我们可以直接读分词后的文件到内存。这里使用了word2vec提供的LineSentence类来读文件,然后套用word2vec的模型。这里只是一个示例,因此省去了调参的步骤,实际使用的时候,你可能需要对我们上面提到一些参数进行调参。

# import modules & set up logging
import logging
import os
from gensim.models import word2vec

logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

sentences = word2vec.LineSentence('./in_the_name_of_people_segment.txt') 

model = word2vec.Word2Vec(sentences, hs=1,min_count=1,window=3,size=100) 

  模型出来了,我们可以用来做什么呢?这里给出三个常用的应用。

1.  第一个是最常用的:找出某一个词向量最相近的词集合

代码如下:

req_count = 5
for key in model.wv.similar_by_word('沙瑞金'.decode('utf-8'), topn =100):
    if len(key[0])==3:
        req_count -= 1
        print key[0], key[1]
        if req_count == 0:
            break;

我们看看沙书记最相近的一些3个字的词(主要是人名)如下:

高育良 0.967257142067
李达康 0.959131598473
田国富 0.953414440155
易学习 0.943500876427
祁同伟 0.942932963371

2. 第二个应用:看两个词向量的相近程度

这里给出了书中两组人的相似程度:

print model.wv.similarity('沙瑞金'.decode('utf-8'), '高育良'.decode('utf-8'))
print model.wv.similarity('李达康'.decode('utf-8'), '王大路'.decode('utf-8'))

 输出如下:

0.961137455325
0.935589365706

3. 第三个应用:找出不同类的词

这里给出了人物分类题:

print model.wv.doesnt_match(u"沙瑞金 高育良 李达康 刘庆祝".split())
word2vec也完成的很好,输出为"刘庆祝"。

以上就是用gensim学习word2vec实战的所有内容。

 

参考:

https://blog.csdn.net/sinat_26917383/article/details/69803018#800_420

  • 38
    点赞
  • 225
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

满腹的小不甘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值