一文浅谈Graph Transformer领域近期研究进展

694e458cebb11fb0008a8985055b27e5.png

©作者 | 崔琪

单位 | 北邮GAMMA Lab

来自 | PaperWeekly

在图表示学习中,Graph Transformer 通过位置编码对图结构信息进行编码,相比 GNN,可以捕获长距离依赖,减轻过平滑现象。本文介绍 Graph Transformer 的两篇近期工作。

a7d8484f5e2c885b7b26448e40a8067e.png


SAT

d537c22cf0a30bdc63ec7c7752bbf7c8.png

论文标题:

Structure-Aware Transformer for Graph Representation Learning

收录会议:

ICML 2022

论文链接:

https://arxiv.org/abs/2202.03036

代码链接:

https://github.com/BorgwardtLab/SAT

本文分析了 Transformer 的位置编码,认为使用位置编码的 Transformer 生成的节点表示不一定捕获它们之间的结构相似性。为了解决这个问题,提出了结构感知 Transformer,通过设计新的自注意机制,使其能够捕获到结构信息。新的注意力机制通过在计算注意力得分之前,提取每个节点的子图表示,并将结构信息合并到原始的自注意机制中。

本文提出了几种自动生成子图表示的方法,并从理论上表明,生成的表示至少与子图表示具有相同的表达能力。该方法在五个图预测基准上达到了最先进的性能,可以利用任何现有的 GNN 来提取子图表示。它系统地提高了相对于基本 GNN 模型的性能,成功地结合了 GNN 和 Transformer。

1.1 方法

133b1e6bc026a0c0eff20596451e23da.png

本文提出了一个将图结构编码到注意力机制中的模型。首先,通过 Structure extractor 抽取节点的子图结构,进行子图结构的注意力计算。其次,遵循 Transformer 的结构进行计算。

Structure-Aware Self-Attention

Transformer 原始结构的注意力机制可以被重写为一个核平滑器:

b05b589fd7fa7de7eb0b0905bdbc41f9.png

其中, 是一个线性函数。 是 空间中,由 和 参数化的(非对称)指数核:

dce9088e301018ff48f3183ead400d08.png

是定义在节点特征上的可训练指数核函数,这就带来了一个问题:当节点特征相似时,结构信息无法被识别并编码。为了同时考虑节点之间的结构相似性,我们考虑了一个更一般化的核函数,额外考虑了每个节点周围的局部子结构。通过引入以每个节点为中心的一组子图,定义结构感知注意力如下:

6f07424a9a4917d137773a414cf81b51.png

其中, 是节点 在图 中的子图,与节点特征 相关, 是可以是任意比较一对子图的核函数。该自注意函数不仅考虑了节点特征的相似度,而且考虑了子图之间的结构相似度。因此,它生成了比原始的自我关注更有表现力的节点表示。定义如下形式的 :

3368aed2ebe6f6b94ca8e2d9ba12feae.png

其中 是一个结构提取器,它提取以 为中心、具有节点特征 的子图的向量表示。结构感知自我注意力十分灵活,可以与任何生成子图表示的模型结合,包括 GNN 和图核函数。在自注意计算中并不考虑边缘属性,而是将其合并到结构感知节点表示中。文章提出两种生成子图的方法:k-subtree GNN extractor 和 k-subgraph GNN extractor,并进行相关实验。

1.2 实验

下图是模型在图回归和图分类任务上的效果。

81ec2c37a076a16bd754f4745ffc7e7e.png

使用 GNN 抽取结构信息后,再用 Transformer 学习特征,由下图可以看出,Transformer 可以增强 GNN 的性能。

9942ac01e1f0a7b226ec7fd8bf80e144.png


GraphGPS

5044241c3b1c372af6687fee06224b69.png

论文标题:

Recipe for a General, Powerful, Scalable Graph Transformer

收录会议:

NeurIPS 2022

论文链接:

https://arxiv.org/abs/2205.12454

代码链接:

https://github.com/rampasek/GraphGPS

本文首先总结了不同类型的编码,并对其进行了更清晰的定义,将其分为局部编码、全局编码和相对编码。其次,提出了模块化框架 GraphGPS,支持多种类型的编码,在小图和大图中提供效率和可伸缩性。框架由位置/结构编码、局部消息传递机制、全局注意机制三个部分组成。该架构在所有基准测试中显示了极具竞争力的结果,展示了模块化和不同策略组合所获得的经验好处。

2.1 方法

在相关工作中,位置/结构编码是影响 Graph Transformer 性能的最重要因素之一。因此,更好地理解和组织位置/结构编码将有助于构建更加模块化的体系结构,并指导未来的研究。本文将位置/结构编码分成三类:局部编码、全局编码和相对编码。各类编码的含义和示例如下表所示。

现有的 MPNN + Transformer 混合模型往往是 MPNN 层和 Transformer 层逐层堆叠,由于 MPNN 固有结构带来的过平滑问题,导致这样的混合模型的性能也会受到影响。因此,本文提出新的混合架构,使 MPNN 和 Transformer 的计算相互独立,获得更好的性能。具体框架如图所示。

04b95ec8952c79858341666cd6122fdd.png

框架主要由位置/结构编码、局部消息传递机制(MPNN)、全局注意机制(Self Attention)三部分组成。根据不同的需求设计位置/结构编码,与输入特征相加,然后分别输入到 MPNN 和 Transformer 模型中进行训练,再对两个模型的结果相加,最后经过一个 2 层 MLP 将输出结果更好的融合,得到最终的输出。更新公式如下:

2d3653f4597cc16a8b2fa0178a63a658.png

2.2 实验

在图级别的任务上,效果超越主流方法:

398172bc44948656204873b0cab26828.png

通过消融实验,研究框架中各个结构的作用,可以看到,MPNN 和位置/结构编码模块对 Transformer 的效果均有提升作用。

70d694a41c04f2e88b8dd58903a3b252.png

867d94c8ac419dee02d5ae5bd66c3eb1.png


总结

两篇文章都有一个共同特点,就是采用了 GNN + Transformer 混合的模型设计,结合二者的优势,以不同的方式对两种模型进行融合,GNN 学习到图结构信息,然后在 Transformer 的计算中起到提供结构信息的作用。在未来的研究工作中,如何设计更加合理的模型,也是一个值得探讨的问题。

发布招聘信息or进NLP群—>加入NLP交流群
  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Graph Transformer是一种用于学习异构图上节点表示的网络模型。它通过将异构图转换为由元路径定义的多个新图,并通过对这些学习的元路径图进行卷积来学习节点表示。元路径是一种描述节点之间关系的方式,它可以具有任意的边类型和长度。Graph Transformer Networks的主要优势是能够在异构图上运行,并以端到端的方式学习节点表示,而无需手动选择元路径。 与其他方法不同,Graph Transformer Networks不需要领域专家手动选择元路径,因此可以更好地捕捉每个问题中的有意义关系。此外,Graph Transformer Networks在异构图形上的性能不会受到元路径选择的显著影响。因此,Graph Transformer Networks能够在异构图上实现更好的节点表示学习。 Graph Transformer Networks的提出为图神经网络在自动学习图结构方面开辟了新的途径。它可以与现有的图神经网络相结合,从而实现对不同类型的图数据进行卷积,而无需进行手动操作。未来的研究方向可以包括与不同类别的神经生长因子结合的神经生长因子层的研究,以及将Graph Transformer Networks应用于其他网络分析任务。 总之,Graph Transformer是一种新颖的网络模型,通过学习元路径来转换异构图,实现节点表示学习,并在异构图上取得了很好的性能。它的提出为图神经网络自动学习图结构提供了新的途径,并在异构图上取得了先进的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值