突破性进展!Med-Former:全新的Transformer医学图像分类架构

点击上方“小白学视觉”,选择加"星标"或“置顶

 
 
重磅干货,第一时间送达
写在前面&笔者的个人理解

近年来,随着深度学习技术的飞速发展,医学图像分类领域迎来了革命性的进步。然而,现有的基于Transformer的图像分类方法在应用于医学图像时面临诸多挑战,尤其是在特征提取能力和关键信息传递效率方面。为了解决这些问题,Stony Brook University的研究团队提出了一种创新的框架——Med-Former,它包含Local-Global Transformer模块和Spatial Attention Fusion模块,显著提升了医学图像分类的性能。

论文链接:https://papers.miccai.org/miccai-2024/500-Paper0867.html

算法网络结构&技术细节梳理
研究背景

医学图像分类在计算机辅助诊断(CAD)系统的发展中扮演着关键角色,但同时也面临着疾病复杂性带来的挑战。传统的卷积神经网络(CNN)在全局上下文信息提取方面存在局限。为了克服这些限制,研究者们引入了Inception网络、Residual网络和DenseNets等,但这些网络仍然无法有效聚焦于医学图像分类中的关键区域。

算法
概述

图1展示了Med-Former架构,包括一个块划分层、一个线性嵌入层、LGT模块、块合并层、SAF模块和一个用于分类的MLP。块划分层将输入图像划分为大小为的块,其中表示块的宽度或高度。这些块通过嵌入阶段的线性嵌入层处理,然后由LGT模块处理并传递到后续阶段。后续阶段包括块合并层、LGT模块和SAF模块。每个阶段使用块合并层对输入特征图进行下采样。SAF模块用于融合前一阶段的SAF模块和当前阶段的LGT模块的输出,改善关键特征传播的连续性并减少信息丢失。第0阶段与K个连续阶段略有不同,它融合了来自嵌入阶段的LGT模块和当前阶段的LGT模块的输出,从而增强了对输入图像的上下文理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值