多模态RAG综述!

MRAG是什么?为什么它比传统模型更聪明?

你问模型:“飞机行李怎么托运?”传统RAG只能给你干巴巴的文字说明,但MRAG不仅能回答文字,还能直接甩出一张流程图甚至教学视频——这就是多模态检索增强生成(MRAG)的魔力!

论文:A Survey on Multimodal Retrieval-Augmented Generation
链接:https://arxiv.org/pdf/2504.08748

MRAG就像给模型装上了“五感”,让它能同时处理文字、图片、视频等多模态数据。论文提到,传统RAG依赖纯文本,容易“脑补”错误信息(学术叫“幻觉”),而MRAG通过真实的多模态数据“查资料”,回答更准确、更接地气!

从“伪多模态”到“真全能”:MRAG的三次进化

MRAG的发展:

  • MRAG 1.0:勉强算“伪多模态”,所有图片视频都要先转成文字描述,信息丢失严重,像是给蒙眼模型猜图片内容。

  • MRAG 2.0:开始保留原始数据,支持跨模态搜索,比如用文字搜图片,但生成答案时还是不够灵活。

  • MRAG 3.0:终极大招!直接保留文档截图、支持多模态输出,甚至能根据场景动态切换“理解”和“生成”模式。

MRAG三代架构对比图
MRAG三代架构对比图

如何同时看懂文字、图片和视频?

MRAG的“大脑”由四大模块构成:

  1. 文档解析与索引:把PDF、网页等复杂文档拆解成文字、表格、图片,并打上标签,像图书馆管理员给书分类。

  2. 多模态搜索规划:决定什么时候该搜文字、什么时候找图片,避免“瞎忙活”。

  3. 跨模态检索:用文本搜图片、用视频找相关文字,核心技术是语义对齐(让不同模态的数据在同一个“语义空间”对话)。

  4. 多模态生成:把检索结果“组装”成图文并茂的答案,比如在步骤说明中插入示意图。

MRAG核心模块流程图
MRAG核心模块流程图

它用什么数据训练和测试?

论文列举了海量数据集,比如:

  • OK-VQA:需要结合常识回答的图片问答(例如“为什么这幅画里的天空是红色的?”)。

  • WebQA:从网页中检索图文信息的多跳推理题。

  • MMBench:覆盖20+能力的综合测试,从物体识别到社会推理全涵盖。

数据集对比表格
数据集对比

评估指标也很有趣:除了常规的“答案正确率”,还要看幻觉率(AI胡编乱造的程度)和多模态一致性(图文是否匹配)。

MRAG也有短板!

  • 信息丢失:图片转文字时可能忽略细节,比如把“华为溪流背坡村”错认成普通河边小屋。

  • 检索效率:同时处理文字、图片、视频时,如何快速找到最相关的内容?

  • 生成质量:图文混排时容易“前言不搭后图”,比如把猫的图片插到狗的描述里。

论文提到一个典型案例:MRAG 1.0曾因强制图片检索,反而引入了误导信息,导致答案翻车!

未来已来:多模态RAG将如何改变我们的生活?

  • 教育:教科书变成“动态百科”,学生问“光合作用”,AI直接展示3D动画+实验视频。

  • 医疗:CT片+病历文字联合分析,辅助医生快速诊断。

  • 电商:拍照搜同款时,模型不仅能找商品,还能推荐搭配方案。

论文预言,未来的MRAG将走向自适应搜索规划(像人类一样动态调整策略)和全模态统一建模(文字、图片、音频、3D无缝融合),真正成为人类的“全能助手”。


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

id:DLNLPer,记得备注呦

内容概要:本文深入探讨了AMESim仿真平台在电动汽车(EV)热泵空调系统设计与优化中的应用。首先介绍了AMESim的基础建模方法,如构建制冷循环模型中的压缩机、蒸发器和冷凝器等组件,并详细解释了各部件的工作原理及其参数设定。接着重点阐述了EV热泵空调系统的特殊之处,即不仅能够制冷还可以在冬季提供高效的制热功能,这对于提高电动汽车在寒冷条件下的续航里程和乘坐舒适性非常重要。文中给出了几个具体的案例,包括通过改变压缩机运行频率来进行性能优化,以及针对低温环境下热泵系统的控制策略,如四通阀切换逻辑、电子膨胀阀开度调节等。此外,还讨论了热泵系统与其他子系统(如电池温控)之间的协同工作方式,强调了系统集成的重要性。最后分享了一些实用的经验技巧,例如如何避免仿真过程中可能出现的问题,怎样评估系统的整体性能等。 适合人群:从事汽车工程、暖通空调(HVAC)领域的研究人员和技术人员,特别是关注新能源汽车热管理系统的专业人士。 使用场景及目标:适用于希望深入了解电动汽车热泵空调系统特性的工程师们,旨在帮助他们掌握基于AMESim进行系统建模、仿真分析的方法论,以便更好地指导实际产品研发。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者具备一定的机械工程背景知识,同时配合官方文档或其他参考资料一起研读,以加深理解。
期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)期末作
### 多模态RAG概述 多模态RAG(Retrieval-Augmented Generation)旨在增强传统文本生成模型的能力,使其能够处理多种数据形式。通过引入视觉、音频以及其他类型的输入,这些系统可以提供更丰富的上下文理解能力[^2]。 ### 实现方式 为了构建一个多模态RAG系统,通常会采用如下策略: #### 数据预处理阶段 在这个过程中,来自不同源的数据被转换成统一表示形式以便于后续处理。对于图像和视频这样的非结构化数据来说,这一步骤尤为重要。例如,在处理图片时可能会先提取特征向量作为其代表;而对于语音信号,则可以通过声谱图等方式将其转化为适合机器学习算法使用的格式。 ```python from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def preprocess_image(image_path): image = Image.open(image_path) inputs = processor(images=image, return_tensors="pt", padding=True) outputs = model.get_image_features(**inputs) return outputs.detach().numpy() ``` #### 跨模态融合机制设计 当面对包含多个感官通道的任务需求时,如何有效地整合各类感知信息成为了一个挑战。一种常见的做法是在编码器内部建立共享参数空间来促进不同类型表征之间的交互作用;另一种则是利用注意力机制让解码端动态调整对各路输入的关注程度[^1]。 #### 检索模块优化 考虑到实际应用场景下的效率考量,针对大规模数据库快速定位最相关条目的技术也得到了重视和发展。比如借助近似最近邻搜索(ApNN)算法可以在不影响精度的前提下显著缩短查询时间开销。 ### 研究论文推荐 有关此主题的研究成果层出不穷,以下是几篇具有代表性的工作: - **Multimodal Retrieval Augmented Generation for Complex Reasoning over Text and Images**: 探讨了结合文本与图像进行复杂推理的方法论创新。 - **VL-BERT: Pre-training of Generic Visual-Linguistic Representations from Scratch via Multi-task Learning**: 提出了一个可以从头训练通用视语义联合表达框架的新颖思路。 - **Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modal Pre-training with Hard Negative Examples**: 阐述了一种用于跨媒体任务的有效解决方案——即通过困难负样本辅助的交叉模式预训练得到广泛适用性的编码网络架构。 ### 应用案例展示 目前已有不少成功的商业产品和服务采用了类似的原理和技术路线: - **搜索引擎改进**:现代互联网巨头们正积极尝试将多媒体元素融入自家平台的核心功能当中去,从而改善用户体验并提高广告投放精准度; - **虚拟助手升级**:新一代AI聊天机器人不仅限于文字对话交流,还能识别用户上传的照片甚至实时捕捉周围环境变化作出回应; - **医疗影像分析工具开发**:医生可借助此类软件迅速获取病历资料摘要的同时查看对应的X光片或CT扫描结果,进而做出更加准确诊断决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值