多模态RAG综述!

MRAG是什么?为什么它比传统模型更聪明?

你问模型:“飞机行李怎么托运?”传统RAG只能给你干巴巴的文字说明,但MRAG不仅能回答文字,还能直接甩出一张流程图甚至教学视频——这就是多模态检索增强生成(MRAG)的魔力!

论文:A Survey on Multimodal Retrieval-Augmented Generation
链接:https://arxiv.org/pdf/2504.08748

MRAG就像给模型装上了“五感”,让它能同时处理文字、图片、视频等多模态数据。论文提到,传统RAG依赖纯文本,容易“脑补”错误信息(学术叫“幻觉”),而MRAG通过真实的多模态数据“查资料”,回答更准确、更接地气!

从“伪多模态”到“真全能”:MRAG的三次进化

MRAG的发展:

  • MRAG 1.0:勉强算“伪多模态”,所有图片视频都要先转成文字描述,信息丢失严重,像是给蒙眼模型猜图片内容。

  • MRAG 2.0:开始保留原始数据,支持跨模态搜索,比如用文字搜图片,但生成答案时还是不够灵活。

  • MRAG 3.0:终极大招!直接保留文档截图、支持多模态输出,甚至能根据场景动态切换“理解”和“生成”模式。

MRAG三代架构对比图
MRAG三代架构对比图

如何同时看懂文字、图片和视频?

MRAG的“大脑”由四大模块构成:

  1. 文档解析与索引:把PDF、网页等复杂文档拆解成文字、表格、图片,并打上标签,像图书馆管理员给书分类。

  2. 多模态搜索规划:决定什么时候该搜文字、什么时候找图片,避免“瞎忙活”。

  3. 跨模态检索:用文本搜图片、用视频找相关文字,核心技术是语义对齐(让不同模态的数据在同一个“语义空间”对话)。

  4. 多模态生成:把检索结果“组装”成图文并茂的答案,比如在步骤说明中插入示意图。

MRAG核心模块流程图
MRAG核心模块流程图

它用什么数据训练和测试?

论文列举了海量数据集,比如:

  • OK-VQA:需要结合常识回答的图片问答(例如“为什么这幅画里的天空是红色的?”)。

  • WebQA:从网页中检索图文信息的多跳推理题。

  • MMBench:覆盖20+能力的综合测试,从物体识别到社会推理全涵盖。

数据集对比表格
数据集对比

评估指标也很有趣:除了常规的“答案正确率”,还要看幻觉率(AI胡编乱造的程度)和多模态一致性(图文是否匹配)。

MRAG也有短板!

  • 信息丢失:图片转文字时可能忽略细节,比如把“华为溪流背坡村”错认成普通河边小屋。

  • 检索效率:同时处理文字、图片、视频时,如何快速找到最相关的内容?

  • 生成质量:图文混排时容易“前言不搭后图”,比如把猫的图片插到狗的描述里。

论文提到一个典型案例:MRAG 1.0曾因强制图片检索,反而引入了误导信息,导致答案翻车!

未来已来:多模态RAG将如何改变我们的生活?

  • 教育:教科书变成“动态百科”,学生问“光合作用”,AI直接展示3D动画+实验视频。

  • 医疗:CT片+病历文字联合分析,辅助医生快速诊断。

  • 电商:拍照搜同款时,模型不仅能找商品,还能推荐搭配方案。

论文预言,未来的MRAG将走向自适应搜索规划(像人类一样动态调整策略)和全模态统一建模(文字、图片、音频、3D无缝融合),真正成为人类的“全能助手”。


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

id:DLNLPer,记得备注呦

### 多模态RAG实现方案 多模态检索增强生成(Multimodal Retrieval-Augmented Generation, RAG)是一种融合多种数据形式的技术,旨在通过结合文本和其他媒体类型的数据来提升模型的表现力。在构建此类系统时,通常会涉及以下几个方面的工作: #### 数据集准备 为了训练一个多模态RAG模型,需要收集并整理包含图像、音频以及视频等多种类型的标注数据集。这些资源可以来自于公开可用的数据源或者自行采集制作。 #### 模型架构设计 一种常见的做法是在预训练的语言模型基础上加入专门处理不同感官输入模块的设计思路。例如,在编码阶段引入视觉特征提取器用于解析图片信息;而在解码端则可能采用跨模态注意力机制使得输出能够更好地反映来自各个感知通道的内容[^1]。 ```python class MultimodalEncoder(nn.Module): def __init__(self, text_encoder, image_encoder): super(MultimodalEncoder, self).__init__() self.text_encoder = text_encoder self.image_encoder = image_encoder def forward(self, input_ids, attention_mask=None, pixel_values=None): encoded_text = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask)[0] encoded_images = self.image_encoder(pixel_values=pixel_values).last_hidden_state combined_representation = torch.cat((encoded_text.mean(dim=1), encoded_images.mean(dim=1)), dim=-1) return combined_representation ``` #### 应用场景探索 当考虑实际应用场景时,可以选择诸如基于对话系统的问答服务作为切入点来进行研究工作。这类应用不仅考验着算法对于复杂语义理解的能力同时也对其快速响应提出了更高要求。 #### 开发工具链支持 利用现有的开源框架如Hugging Face Transformers库可以帮助加速开发过程中的实验迭代速度。该平台提供了丰富的API接口便于开发者调用各种先进的自然语言处理技术成果。 #### 参考文献综述 针对这一主题撰写综述性质的文章有助于梳理当前领域内的最新进展和技术趋势。这一步骤往往能为后续具体实施方案的选择提供重要依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值