第3章 线性映射

线性映射

  • 定义 3.1 从线性空间 V1(F) V 1 ( F ) V2(F) V 2 ( F ) 的一个映射 σ σ 是线性的,如果 α,βV1 ∀ α , β ∈ V 1 λ,μF ∀ λ , μ ∈ F 都有
    σ(λα+μβ)=λσ(α)+μσ(β) σ ( λ α + μ β ) = λ σ ( α ) + μ σ ( β )

零元 01 0 1 一定一映射到零元 02 0 2 ,否则不满足线性定义

  • 映射的像与和: σ(V1) σ ( V 1 ) σ1(02) σ − 1 ( 0 2 ) ,也常记作 Imσ I m σ kerσ k e r σ

  • 定理 3.1 线性映射是单射 σ1(02)={01} σ − 1 ( 0 2 ) = { 0 1 } 。就是说只有 01 0 1 可以映射到 02 0 2

    证明思路:
    左到右:零元 01 0 1 一定一映射到零元 02 0 2 ,加上单射,右边成立
    右到左:反证法,假设存在 σ(α1)=σ(α2) σ ( α 1 ) = σ ( α 2 ) ,则 α1=α2 α 1 = α 2

线性映射的秩

  • 线性映射的秩: r(σ)=dimσ(V1) r ( σ ) = d i m σ ( V 1 )

  • r(σ)+dim(Kerσ)=dim(V1) r ( σ ) + d i m ( K e r σ ) = d i m ( V 1 )

    证明思路:
    σ(V1)=L(σ(α1),...,σ(αn)) σ ( V 1 ) = L ( σ ( α 1 ) , . . . , σ ( α n ) ) α α 是基向量
    dim(Kerσ)=k d i m ( K e r σ ) = k ,扩张其基向量到 V1 V 1 的基。则 σ(V1)=L(σ(αk+1),...,σ(αn)) σ ( V 1 ) = L ( σ ( α k + 1 ) , . . . , σ ( α n ) ) 。证明这n-k个像线性无关即可

  • 满射 r(σ)=dim(V2) r ( σ ) = d i m ( V 2 ) ,单射 dim(Kerσ)=0 d i m ( K e r σ ) = 0

  • 定理 3.4 r(σ)+r(τ)nr(τσ)min(r(σ),r(τ)) r ( σ ) + r ( τ ) − n ≤ r ( τ σ ) ≤ m i n ( r ( σ ) , r ( τ ) ) σL(V1,V2),τL(V2,V3)Vim,n,s σ ∈ L ( V 1 , V 2 ) , τ ∈ L ( V 2 , V 3 ) , V i 依 次 是 m , n , s 维 空 间

    证明思路:一个n维空间映射到m维空间,得到的像最多是n维

  • 定理 3.7 若 V1(F) V 1 ( F ) V2(F) V 2 ( F ) 分别是n和m维线性空间,则空间 L(V1,V2) L ( V 1 , V 2 ) 的维度是nm

    证明思路: L(V1,V2) L ( V 1 , V 2 ) 的元素是映射。先确定零元素的意义:任何映射 σ+σ0=σ σ + σ 0 = σ 。这个映射 σ0 σ 0 一定把 V1 V 1 中的基向量映射到 V2 V 2 中的 02 0 2
    先找nm个线性无关的映射,它们线性组合为 σ0 σ 0 ,则系数都是0
    在证明所有映射都可通过上面nm个映射表示
    映射表示: σ(α1)=k11β1+...+k1mβm σ ( α 1 ) = k 11 β 1 + . . . + k 1 m β m , . σ(αn)=kn1β1+...+knmβm σ ( α n ) = k n 1 β 1 + . . . + k n m β m
    或者通过映射的矩阵表示证明

  • 定理 3.8 两个有限维线性空间 V1(F) V 1 ( F ) V2(F) V 2 ( F ) 同构(存在线性双射) 它们维数相同

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值