Google Earth Engine ——MCD64A1.006 MODIS Burned Area Monthly Global 500m第6版燃烧区数据产品

Terra和Aqua结合的MCD64A1第6版燃烧区数据产品是每月一次的全球网格化500米产品,包含每像素的燃烧区和质量信息。MCD64A1烧毁面积绘图方法采用了500米MODIS表面反射图像和1公里MODIS主动火灾观测。该算法使用对燃烧敏感的植被指数(VI)来创建动态阈值,应用于综合数据。VI是由MODIS短波红外大气校正表面反射带5和7得出的,带有时间纹理的测量。该算法确定了每个单独的MODIS瓦片中的500米网格单元的燃烧日期。日期被编码在一个单一的数据层中,作为焚烧发生的日历年的序日,其值被分配给未焚烧的土地像素,并为缺失的数据和水网格单元保留额外的特殊值。

The Terra and Aqua combined MCD64A1 Version 6 Burned Area data product is a monthly, global gridded 500m product containing per-pixel burned-area and quality information. The MCD64A1 burned-area mapping approach employs 500m MODIS Surface Reflectance imagery coupled with 1km MODIS active fire observations. The algorithm uses a burn sensitive vegetation index (VI) to create dynamic thresholds that are applied to the composite data. The VI is derived from MODIS shortwave infrared atmospherically corrected surface reflectance bands 5 and 7 with a measure of temporal texture. The algorithm identifies the date of burn for the 500m grid cells within each individual MODIS tile. The date is encoded in a single data layer as the ordinal day of the calendar year on which the burn occurred, with values assigned to unburned land pixels and additional special values reserved for missing data and water grid cells.

Documentation:

Dataset Availability

 2000-11-01T00:00:00 - 2021-07-01T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

Copied

ee.ImageCollection("MODIS/006/MCD64A1")

Tags

burnfiregeophysicalmodismcd64a1monthlyglobalusgsnasa

DESCRIPTIONBANDSTERMS OF USECITATIONSDOIS

Resolution

500 meters

Bands Table

NameDescriptionMinMax
BurnDateBurn day of year. Possible values: 0 (unburned), 1-366 (approximate Julian day of burning).0366
UncertaintyEstimated uncertainty in burn day0100
QAQuality assurance indicators
QA Bitmask
  • Bit 0: Land/water
    • 0: Water grid cell
    • 1: Land grid cell
  • Bit 1: Valid data flag. A value of 1 indicates that there was sufficient valid data in the reflectance time series for the grid cell to be processed. (NB Water grid cells will always have this bit clear.)
    • 0: Insufficient valid data
    • 1: Sufficient valid data
  • Bit 2: Shortened mapping period. This flag indicates that the period of reliable mapping does not encompass the full one-month product period, i.e., burns could not be reliably mapped over the full calendar month.
    • 0: Mapping period not shortened
    • 1: Mapping period shortened
  • Bit 3: Grid cell was relabeled during the contextual relabeling phase of the algorithm.
    • 0: Grid cell was not relabeled
    • 1: Grid cell was relabeled
  • Bit 4: Spare bit
    • 0: N/A
  • Bits 5-7: Special condition code reserved for unburned grid cells. This code provides an explanation for any grid cells that were summarily classified as *unburned* by the detection algorithm due to special circumstances.
    • 0: None or not applicable (i.e., burned, unmapped, or water grid cell).
    • 1: Valid observations spaced too sparsely in time.
    • 2: Too few training observations or insufficient spectral separability between burned and unburned classes.
    • 3: Apparent burn date at limits of time series.
    • 4: Apparent water contamination.
    • 5: Persistent hot spot.
    • 6: Reserved for future use.
    • 7: Reserved for future use.
FirstDayFirst day of the year of reliable change detection0366
LastDayLast day of the year of reliable change detection0366

 使用说明:

MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

通过LP DAAC获得的MODIS数据和产品对后续使用、销售或再分配没有限制。

引用:

LP DAAC - MCD12Q1LP DAAC - Land Processes Distributed Active Archive Center - Sioux Falls, SDhttps://doi.org/10.5067/MODIS/MCD12Q1.006

代码:

var dataset = ee.ImageCollection('MODIS/006/MCD64A1')
                  .filter(ee.Filter.date('2017-01-01', '2018-05-01'));
var burnedArea = dataset.select('BurnDate');
var burnedAreaVis = {
  min: 30.0,
  max: 341.0,
  palette: ['4e0400', '951003', 'c61503', 'ff1901'],
};
Map.setCenter(6.746, 46.529, 2);
Map.addLayer(burnedArea, burnedAreaVis, 'Burned Area');

dNBR值(differenced Normalized Burn Ratio)是衡量火灾烈度的指标之一,可以通过MODIS/061/MCD64A1数据计算得到。 以下是基于GEE计算dNBR值的步骤: 1. 打开GEE平台并登录账号。 2. 在左侧菜单栏中选择“地图”选项,进入地图界面。 3. 在地图界面中,点击左上角的“+”按钮,添加MODIS/061/MCD64A1数据。 4. 在左侧图层栏中选择“MODIS/061/MCD64A1_500m_aid0001”图层,并调整时间范围至所需的时间段。 5. 在左侧菜单栏中选择“代码编辑器”,并在编辑器中输入以下代码: ``` // 定义AOI域 var aoi = ee.Geometry.Polygon( [[[113.0, 33.0], [115.0, 33.0], [115.0, 35.0], [113.0, 35.0], [113.0, 33.0]]], null, false); // 选择计算的时间段 var start_date = ee.Date.fromYMD(2019, 1, 1); var end_date = ee.Date.fromYMD(2019, 12, 31); // 选择计算的MODIS波段 var modis_bands = ['BurnDate','QA']; // 筛选出指定时间段内的MODIS数据 var modis_dataset = ee.ImageCollection('MODIS/006/MCD64A1') .select(modis_bands) .filterDate(start_date, end_date) .filterBounds(aoi); // 定义NDVI计算公式 var nbr_formula = function(image) { var nbr = image.normalizedDifference(['sur_refl_b04', 'sur_refl_b07']); return nbr.rename('NBR'); }; // 计算dNBR值 var pre_fire = ee.Image(modis_dataset.sort('system:time_start', false).first()).select('BurnDate'); var post_fire = ee.Image(modis_dataset.sort('system:time_start', true).first()).select('BurnDate'); var pre_nbr = nbr_formula(pre_fire); var post_nbr = nbr_formula(post_fire); var dNBR = post_nbr.subtract(pre_nbr).rename('dNBR'); // 将结果可视化 Map.centerObject(aoi, 9); Map.addLayer(dNBR, {min:-1,max:1,palette:['FF0000','FFFF00','00FF00']}, 'dNBR'); ``` 上述代码中,首先定义了计算域(AOI)、计算时间段(start_date和end_date)以及需要计算的MODIS波段(modis_bands)。接着,通过ImageCollection函数筛选出指定时间段内的MODIS数据,并选择需要的波段。定义了计算dNBR值所需的函数(nbr_formula),并使用该函数计算出前火情(pre_fire)和后火情(post_fire)的NBR值,最终得出dNBR值(dNBR)。最后将结果可视化,其中min、max和palette参数可根据需要进行调整。 完成上述代码的输入和运行后,即可在地图上看到计算得到的dNBR值。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值