Google Earth Engine(GEE)——全球农田范围分布数据集1000m

GFSAD1000是一个由NASA资助的项目,旨在提供高分辨率的全球农田数据,包括灌溉和雨养作物的信息。该数据集提供了1公里分辨率的农田分类地图,涵盖2010年,利用多源遥感数据进行制作。数据包括五个类别:非农田、灌溉专业农田、灌溉小农田、雨养农田和小碎片雨养农田。提供的地球引擎片段代码可用于地图显示和分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 GFSAD1000:农田范围 1km 多研究作物面具,全球粮食支持分析数据

数据集可用性

2010-01-01T00:00:00Z–2010-01-01T00:00:00

数据集提供者

全球粮食安全支持分析数据在 30m 项目 (GFSAD30)

地球引擎片段

ee.Image("USGS/GFSAD1000_V1") 

GFSAD 是 NASA 资助的一个项目,旨在提供高分辨率的全球农田数据及其用水情况,为 21 世纪的全球粮食安全做出贡献。GFSAD 产品是通过多传感器遥感数据(例如,Landsat、MODIS、AVHRR)、二次数据和田间地块数据得出的,旨在记录农田动态。

在标称的 1 公里尺度上,V0.1 提供了来自四项主要研究的五类全球农田范围地图的空间分布:Thenkabail 等人。(2009a,2011),皮特曼等人。(2010),于等人。(2013)和弗里德尔等人。(2010)。V1.0 是一个 5 级产品,提供有关全球农田范围和灌溉与雨养作物的信息。没有作物类型或作物类型优势信息。使用时间序列遥感数据可以获得每个像素的种植强度(单、双、三和连续作物)。GFSAD1000 标称 2010 产品是使用 2007 年至 2012 年的数据创建的。

分辨率
1000米

波段

姓名最大限度描述
landcover09

裁剪蒙版类说明

地被分类表

价值颜色描述
0黑色的非农田
1农田:灌溉专业
2棕色的农田:灌溉小
302a50f农田:雨养
4绿色农田:雨养,小碎片
5黄色农田:雨养,非常小的碎片

使用条款

大多数美国地质调查局 (USGS) 信息都属于公共领域,可以不受限制地使用。有关确认或记入 USGS 作为信息源的其他信息是可用的。

代码:

var dataset = ee.Image('USGS/GFSAD1000_V1');
var cropMask = dataset.select('landcover');
var cropMaskVis = {
  min: 0.0,
  max: 5.0,
  palette: ['black', 'orange', 'brown', '02a50f', 'green', 'yellow'],
};
Map.setCenter(-17.22, 13.72, 2);
Map.addLayer(cropMask, cropMaskVis, 'Crop Mask');

Citations:

结果:

 

 

### 使用 Google Earth Engine 获取和处理作物分布数据 为了有效地获取并处理作物分布数据,在 Google Earth Engine (GEE) 中可以采用多种方法和技术来实现这一目标。具体来说: #### 数据源的选择 对于作物分布的研究,可以选择 Sentinel 卫星系列作为主要的数据来源之一[^1]。这类卫星提供了高频率的时间序列观测能力以及较高的空间分辨率,非常适合用于监测地面覆盖变化。 #### 预处理阶段 在正式开始分析之前,通常需要对原始影像执行一系列预处理操作以提高后续分类精度。这包括但不限于大气校正、云层检测与去除等措施。例如,可以通过 GEE 自带的功能或者调用外部 API 来完成这些任务。 #### 图像分类技术的应用 一旦完成了必要的预处理工作,则可以根据研究需求选用合适的图像分类算法来进行最终的目标识别。常见的做法是从训练样本集中学习特征模式,并将其应用于整个区域内的未知像素上。支持向量机(SVM),随机森林(Random Forests),决策树(Decision Trees)都是常用的机器学习模型选项;另外还有深度卷积神经网络(CNN)这样的高级工具可供尝试。 #### 利用现有数据集辅助建模 除了直接依赖于光学遥感影像外,还可以考虑引入其他类型的补充资料帮助构建更精确的地图。比如提到的由 NASA 支持开发的 GFSAD 全球农田范围分布数据库就非常适合作为此类项目的参考资料[^2]。该集合不仅涵盖了广泛的地理范围而且具备良好的时间连续性,能够显著增强结果的有效性和可靠性。 ```javascript // JavaScript Code Example for loading and visualizing crop distribution data using GEE. var dataset = ee.ImageCollection('COPERNICUS/S2') .filterDate('2023-01-01', '2023-12-31'); print(dataset); Map.addLayer(dataset, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'True Color Image'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值