Landsat 8 Landsat8 Collection2大气层顶反射率数据

本文介绍了Landsat-8卫星的OLI和TIRS传感器生成的TOA数据集,包括其辐射亮度转换、波段特性、空间分辨率以及用于云量评估的Bitmask信息。文章还展示了如何使用AI处理这些数据,以进行全国范围内的实时分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

Landsat8 TOA数据集是将数据每个波段的辐射亮度值转换为大气层顶表观反射率TOA,是飞行在大气层之外的航天传感器量测的反射率,包括了云层、气溶胶和气体的贡献,可通过辐射亮度定标参数、太阳辐照度、太阳高度角和成像时间等几个参数计算得到。为了便于在线分析存储,平台将影像像素值扩大了10000倍。前言 – 人工智能教程
Landsat-8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器,每16天可以实现一次全球覆盖。
OLI包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km。TIRS用于收集地球两个热区地带的热量流失,能够了解所观测地带水分消耗。

数据集ID: 

LC08/02/T1

时间范围: 2022年01月-现在

范围: 全国

来源: USGS

复制代码段: 

var images = pie.ImageCollection("LC08/02/T1")

名称比例因子分辨率波段范围(μm)描述信息
B10.000130m0.43-0.45μmCoastal
B20.000130m0.45-0.51μmBlue
B30.000130m0.53-0.59μmGreen
B40.000130m0.64-0.67μmRed
B50.000130m0.85-0.88μmNIR
B60.000130m1.57-1.65μmSWIR 1
B70.000130m2.11-2.29μmSWIR 2
B80.000115m0.50-0.68μmPan
B90.000130m1.36-1.38μmCirrus
B100.0001100m10.6-11.19μmTIRS 1
B110.0001100m11.5-12.51μmTIRS 2
QA_PIXEL------QA Bitmask
Bitmask for BQA
  • Bit 0: Designated Fill
    • 0: No
    • 1: Yes
  • Bit 1: Terrain Occlusion
    • 0: No
    • 1: Yes
  • Bits 2-3: Radiometric Saturation
    • 0: No bands contain saturation
    • 1: 1-2 bands contain saturation
    • 2: 3-4 bands contain saturation
    • 3: 5 or more bands contain saturation
  • Bit 4: Cloud
    • 0: No
    • 1: Yes
  • Bits 5-6: Cloud Confidence
    • 0: Not Determined / Condition does not exist.
    • 1: Low, (0-33 percent confidence)
    • 2: Medium, (34-66 percent confidence)
    • 3: High, (67-100 percent confidence)
  • Bits 7-8: Cloud Shadow Confidence
    • 0: Not Determined / Condition does not exist.
    • 1: Low, (0-33 percent confidence)
    • 2: Medium, (34-66 percent confidence)
    • 3: High, (67-100 percent confidence)
  • Bits 9-10: Snow / Ice Confidence
    • 0: Not Determined / Condition does not exist.
    • 1: Low, (0-33 percent confidence)
    • 2: Medium, (34-66 percent confidence)
    • 3: High, (67-100 percent confidence)
  • Bits 11-12: Cirrus Confidence
    • 0: Not Determined / Condition does not exist.
    • 1: Low, (0-33 percent confidence)
    • 2: Medium, (34-66 percent confidence)
    • 3: High, (67-100 percent confidence)

代码:

/**
 * @File    :   PIELandsat8_c2_TOA
 * @Time    :   2022/5/19
 * @Author  :   piesat
 * @Version :   1.0
 * @Contact :   400-890-0662
 * @License :   (C)Copyright 航天宏图信息技术股份有限公司
 * @Desc    :   加载Landsat 8 collection2 TOA影像
 */

// 加载Landsat 8 TOA影像
var landsat8 = pie.ImageCollection("LC08/02/T1")
                  .filterDate("2022-01-01","2022-06-01")
                  .filter(pie.Filter.lte('cloud_cover',30))
                  .first()
                  .select(["B2","B3","B4"])
                  .multiply(0.0001)
print(landsat8)
Map.addLayer(landsat8,{min:0.05,max:0.3,bands:["B4","B3","B2"]},"Landsat8-TOA");
Map.centerObject(landsat8,7);

属性 

landsat_product_id

string

影像名称

scene_id

string

影像id

correction

string

产品级别

collection_number

string

数据集编号

date

string

影像日期

collection_category

string

影像质量级别属性,如T2,T1等

cloud_cover

float

云量覆盖百分比,-1表示未计算

cloud_cover_land

float

陆地云量覆盖百分比,-1表示未计算

sun_azimuth

double

太阳方位角

sun_elevation

double

太阳高度角

off_nadir

double

天底偏角

sensor_id

string

传感器类型

wrs_path

int

条带号

wrs_row

int

行编号

### ENVI表观反射率数据表示 在ENVI软件中,表观反射率(TOA reflectance)可以通过特定的数值范围来表示。这些数值通常是经过标准化处理后的浮点数,其取值一般介于0到1之间[^3]。 当从遥感影像提取表观反射率时,每个像素代表地表某一区域对应波段上的反射强度。具体来说: - **数据存储格式**:通常情况下,这类数据会以二进制文件形式存在,比如BIL (Band Interleaved by Line),BSQ (Band Sequential) 或者 BIP (Band Interleaved by Pixel)。 - **元数据支持**:为了正确解释这些数值的意义以及它们所属的空间位置,还需要配套提供详细的头文件(.hdr),其中包含了诸如地理坐标系统、空间分辨率等重要信息。 对于具体的数值表达方式而言,假设有一个Landsat 8 OLI传感器获取的某一波段图像,则该波段内的每一个像素都含有一个反映其表观光谱特性的值。这个值是由原始DN(Digital Number, 数字量化等级)换而来,并考虑到了太阳角度修正等因素的影响。例如,在某些标准产品中,表观反射率可能被缩放至千分之一的比例因子下保存为整型数据,即实际反射率为文件内记录值除以一千的结果。 ```python import numpy as np def toa_reflectance(dn_value, scale_factor=0.001): """Convert DN value to TOA reflectance.""" return dn_value * scale_factor # Example usage with a hypothetical DN value of 5678 from an image file. example_toa = toa_reflectance(5678) print(f"The Top-of-Atmosphere Reflectance is {example_toa:.4f}") ``` 上述Python代码片段展示了如何基于给定的数字编号(Digital Numbers, DN)和比例因子将之化为真实的表观反射率值。这里假定了输入的是未经任何预处理过的原始DN值,并且采用了常见的0.001作为默认的比例因子来进行简单说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值