GEE 土地分类——如何利用随机森林方法进行土地分类

本文介绍了如何利用Google Earth Engine(GEE)结合随机森林算法进行土地分类。内容涉及土地分类的重要性和类型,以及如何将训练好的分类器导出为资产,并提供了相关函数的说明和错误矩阵的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

土地分类简介

土地分类是指根据土地的不同用途和功能特点对土地进行划分和分类的过程。根据不同的目的和需要,土地可以根据其用途、地理位置、资源等特点进行分类。相较于以往的土地分类不同,我们可以将我们的训练好的模型存储到assets中,然后直接调用其分类训练好的分类器。这里用到的数据是利用MODIS进行提取并且进行分类。

常见的土地分类包括:
1. 农用地:用于农业生产的土地,包括耕地、园地、林地、牧草地等。
2. 建设用地:用于城市建设和工业用地的土地,包括居住用地、商业用地、工业用地、公共设施用地等。
3. 保护用地:用于环境保护和生态功能保护的土地,包括自然保护区、森林公园、水源保护区等。
4. 矿产资源用地:用于开采和利用矿产资源的土地,包括矿山、矿区、采石场等。
5. 水域用地:用于水利建设和水资源利用的土地,包括水库、水利工程、河流、湖泊等。
6. 交通用地:用于交通运输的土地,包括公路、铁路、机场、港口等。
7. 基础设施用地:用于建设基础设施的土地,包括电力设施、通信设施、供水设施等。
8. 公共服务用地:用于提供公共服务和社会福利的土地,包括学校、医院、文化设施等。
9. 未利用土地:尚未利用的土地或者无法被利用的土地,包括沙漠、荒地、滩涂等。

这些土地分类不仅在国家和地方规划中起到重要作用&#x

### GEE 土地利用分类方法及应用 #### 随机森林方法进行土地分类 土地分类涉及根据不同用途和功能特点对土地进行划分。通过机器学习算法,特别是随机森林方法,在Google Earth Engine (GEE)平台上可以实现高效的自动化分类过程[^1]。 在具体实践中,训练好的模型能够被保存至Assets库以便后续重复调用已有的分类器来处理新的数据集。这种方法不仅提高了效率还增强了结果的一致性和可比性。所使用的输入数据通常来自MODIS传感器获取的信息并经过预处理用于特征提取与类别标注。 ```python import ee ee.Initialize() # 加载训练数据 training_data = ee.FeatureCollection('projects/your_project/assets/training_data') # 定义随机森林分类器参数 classifier = ee.Classifier.smileRandomForest( numberOfTrees=50, variablesPerSplit=None, ).train(training_data, 'class', ['band1', 'band2']) # 应用分类器到影像集合上 image_collection = ee.ImageCollection('MODIS/006/MOD44B') classified_image = image_collection.first().classify(classifier) # 将结果导出或可视化 Map.addLayer(classified_image.randomVisualizer(), {}, ' Classified Image') ``` #### 利用Landsat-8 和 Sentinel-2 进行时间序列土地分类 为了提高分类精度以及适应更广泛的应用场景,研究人员也探索了结合多种遥感数据源的可能性。例如采用Landsat-8 和Sentinel-2 的多光谱波段作为特征输入给射频(RF)分类器来进行长时间跨度内的动态监测[^2]。 这种做法有助于捕捉不同季节条件下植被和其他表面属性的变化规律,并据此调整优化最终得到的时间序列土地覆盖图层。此外,通过对历史存档资料的研究还可以评估过去几十年间发生的环境变迁趋势及其影响因素。 #### 支持向量机(SVM)应用于特定区域的土地利用分类 除了上述提到的方法外,支持向量机也被证明是一种有效的工具用来解决复杂的非线性模式识别问题。在中国山西省的例子中,SVM成功实现了对该地区土地覆被类型的精确区分[^3]。 整个流程涵盖了从原始卫星图片的选择到最后成果的质量检验等多个环节: 1. **影像选取**:挑选适合时间段内质量较高的光学影像; 2. **选取训练样本**:标记具有代表性的地面实况点位形成正负两类标签组; 3. **训练模型**:运用选定的核函数完成SVM的学习过程; 4. **影像分类**:将未知像素分配给最接近决策边界的那一类; 5. **精度验证**:对比实际调查情况计算Kappa系数等指标衡量整体性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值