CARIACO Ocean Time Series program, Cariaco Basin, Venezuela
简介
自1995年以来,卡里亚科海洋时间序列(原名为“彩色海洋中的碳保留”)项目一直致力于研究卡里亚科盆地表面初级生产力、风等物理强迫变量以及颗粒碳沉降通量之间的关系。该洼地位于委内瑞拉大陆架(地图),其水文特性和初级生产力(浮游藻类光合作用碳固定速率)表现出明显的季节性和年际变化。
这个奇特的盆地由于其受限的循环和较高的初级生产力 ,深度 ~250 米以下处于缺氧状态。CARIACO 观测表明年度初级生产率超过 500 gC/ m2 y,其中 15-20% 以上可归因于持续时间为一个月或更短的事件。在其他收集时间序列观测数据的位置也观察到了此类事件,并且表明之前基于有限采样的区域生产估算值可能被低估了。卡里亚科盆地的年度初级生产率与使用时间序列观测数据对蒙特利湾估计的速率相当,并且高于之前对乔治斯浅滩、纽约陆架和俄勒冈陆架估计的速率。
卡里亚科盆地长期以来一直是科学家们试图解释古气候的关注焦点。由于其沉积速率高且保存完好,卡里亚科盆地的纹层沉积物为研究高分辨率古气候以及更好地理解热带地区在全球气候变化中的作用提供了机会。
如今,CARIACO 项目将沉积物记录与近海表层过程联系起来。CARIACO 项目维护的沉积物捕集器显示,超过 5%的原生物质到达了 275 米深处,近 2%到达了 1400 米深处。这一通量的意义在于它代表了一个碳汇,并有助于解释卡里亚科盆地底部储存的古代气候记录。
摘要
Overview
Platforms
Water-based Platforms, In Situ Ocean-based Platforms
Instruments
n/a
Data Formats
n/a
Temporal Extent
1995-10-01 ongoing
Data Centers
NASA/GSFC/SED/ESD/GCDC/OB.DAAC
Spatial Extent
Bounding Box: (90.0°, 180.0°), (-90.0°, -180.0°)
代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
import pandas as pd
import leafmap
url = "https://github.com/opengeos/NASA-Earth-Data"
df = pd.read_csv(url, sep="\t")
df
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
short_name="CARIACO",
cloud_hosted=True,
bounding_box=(-180.0, -90.0, 180.0, 90.0),
temporal=("1995-10-01", "1995-11-01"),
count=-1, # use -1 to return all datasets
return_gdf=True,
)
gdf.explore()
#leafmap.nasa_data_download(results[:5], out_dir="data")
网址推荐
知识星球
知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)https://wx.zsxq.com/group/48888525452428