视觉SLAM笔记(35) 三角化求特征点的空间位置

视觉SLAM笔记(35) 三角化求特征点的空间位置


1. 特征点的空间位置

视觉SLAM笔记(31) 特征提取和匹配 已求出特征点
视觉SLAM笔记(33) 对极约束求解相机运动 已根据特征点的对极几何估算出相机的位姿
现在通过三角化求出特征点的空间位置


2. 三角测量函数

创建/VSLAM_note/035/triangulation.cpp文件
其中 特征提取函数 find_feature_matches视觉SLAM笔记(33) 对极约束求解相机运动 相同
2D-2D姿态估计函数 pose_estimation_2d2d视觉SLAM笔记(33) 对极约束求解相机运动 相似

调用 OpenCV 提供的 triangulatePoints 函数创建三角测量函数triangulation进行三角化

void triangulation(
    const vector< KeyPoint >& keypoint_1,
    const vector< KeyPoint >& keypoint_2,
    const std::vector< DMatch >& matches,
    const Mat& R, const Mat& t,
    vector< Point3d >& points)
{
    Mat T1 = (Mat_<float>(3, 4) <<
        1, 0, 0, 0,
        0, 1, 0, 0,
        0, 0, 1, 0);
    Mat T2 = (Mat_<float>(3, 4) <<
        R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2), t.at<double>(0, 0),
        R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2), t.at<double>(1, 0),
        R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2), t.at<double>(2, 0)
        );

    // 相机内参,TUM Freiburg2
    double cx = 325.1;  // 像素坐标系与成像平面之间的原点平移
    double cy = 249.7;
    double fx = 520.9;  // 焦距
    double fy = 521.0;
    Mat K = (Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 1);

    vector<Point2f> pts_1, pts_2;
    for (DMatch m : matches)
    {
        // 将像素坐标转换至相机坐标
        pts_1.push_back(pixel2cam(keypoint_1[m.queryIdx].pt, K));
        pts_2.push_back(pixel2cam(keypoint_2[m.trainIdx].pt, K));
    }

    // 三角测量
    Mat pts_4d;
    cv::triangulatePoints(T1, T2, pts_1, pts_2, pts_4d);

    // 转换成非齐次坐标
    for (int i = 0; i < pts_4d.cols; i++)
    {
        Mat x = pts_4d.col(i);
        x /= x.at<float>(3, 0); // 归一化
        Point3d p(
            x.at<float>(0, 0),
            x.at<float>(1, 0),
            x.at<float>(2, 0)
        );
        points.push_back(p);
    }
}

3. 求特征点的空间位置

在 main 函数中增加三角测量部分,并验证重投影关系

int main(int argc, char** argv)
{
    if (argc != 3)
    {
        cout << "usage: triangulation img1 img2" << endl;
        return 1;
    }
    //-- 读取图像
    Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
    Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);

    //-- 特征提取
    vector<KeyPoint> keypoints_1, keypoints_2;
    vector<DMatch> matches;
    find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
    cout << "一共找到了" << matches.size() << "组匹配点" << endl;

    //-- 估计两张图像间运动
    Mat R, t;
    pose_estimation_2d2d(keypoints_1, keypoints_2, matches, R, t);

    //-- 三角化
    vector<Point3d> points;
    triangulation(keypoints_1, keypoints_2, matches, R, t, points);

    //-- 验证三角化点与特征点的重投影关系
    // 相机内参,TUM Freiburg2
    double cx = 325.1;  // 像素坐标系与成像平面之间的原点平移
    double cy = 249.7;
    double fx = 520.9;  // 焦距
    double fy = 521.0;
    Mat K = (Mat_<double>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 1);
    for (int i = 0; i < matches.size(); i++)
    {
        // 第一个图
        Point2d pt1_cam = pixel2cam(keypoints_1[matches[i].queryIdx].pt, K);   
        cout << "point in the first camera frame: " << pt1_cam << endl;

        // 空间位置
        Point2d pt1_cam_3d(points[i].x / points[i].z, points[i].y / points[i].z);
        cout << "point projected from 3D " << pt1_cam_3d << ", d=" << points[i].z << endl;

        // 第二个图
        Point2f pt2_cam = pixel2cam(keypoints_2[matches[i].trainIdx].pt, K);
        cout << "point in the second camera frame: " << pt2_cam << endl;

        // 重投影
        Mat pt2_trans = R * (Mat_<double>(3, 1) << points[i].x, points[i].y, points[i].z) + t;
        pt2_trans /= pt2_trans.at<double>(2, 0);
        cout << "point reprojected from second frame: " << pt2_trans.t() << endl;
        cout << endl;
    }

    return 0;
}

打印了每个空间点在两个相机坐标系下的投影坐标与像素坐标
相当于 P 的投影位置与看到的特征点位置

在这里插入图片描述
可以看到,误差的量级大约在小数点后第三位
可以看到,三角化特征点的距离大约为 24
但由于尺度不确定性,并不知道这里的 24 究竟是多少米


参考:

《视觉SLAM十四讲》


相关推荐:

视觉SLAM笔记(34) 三角测量
视觉SLAM笔记(33) 对极约束求解相机运动
视觉SLAM笔记(32) 2D-2D: 对极几何
视觉SLAM笔记(31) 特征提取和匹配
视觉SLAM笔记(30) 特征点法


发布了217 篇原创文章 · 获赞 292 · 访问量 289万+

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie

分享到微信朋友圈

×

扫一扫,手机浏览