Prompt 范式简述

35 篇文章 2 订阅
5 篇文章 0 订阅

Prompt 范式简述

Traditional Framework:

  • pre-train
  • fine-tune

传统的训练框架为,先在一个大规模的数据集上对模型进行预训练,然后在目标任务的数据集上进行微调。

Prompt Framework

  • pre-train
  • prompt
  • predict

Prompt框架则是分成三个部分,预训练,Prompt生成,以及预测

Goal: Let the pertained model itself can be used to predict the desired output without any task-specific training.

Prompt 本质上是对任务数据进行变换,将原本的目标、标签,做一个转换,融入到数据之中。

For example, the emotion label of the sentence “I won the game.” is good.

We can also get a longer sentence “I won the game, so I felt good.”

上述这个例子就是,将标签 good 转换成额外的语句,加到输入后面。

这样的变换使得,我们通过自然的自监督学习,就可以实现任务所需的目标

Prompt Basics

一般来说,Prompt 包含三个步骤:

  1. Prompt Addition
  2. Answer Search
  3. Answer Mapping
Prompt Addition

这一步其实是将输入进行修改

比如 [X] Overall, it was a [Z] movie 这样的形式

我们将输入填到 [X] 的位置,返回一整个语句,留出 [Z] 的位置,等待答案的填充。

Answer Search

z ^ = search z ∈ Z P ( f fill ( x ′ , z ) ; θ ) \hat z = \text{search}_{z\in \mathcal{Z}}P(f_{\text{fill}}(x',z);\theta) z^=searchzZP(ffill(x,z);θ)

如上述公式所示,在这一步,我们的目的是,填充最可能的答案。

Answer Mapping

将搜索到的答案和输出值进行匹配

也就是将填充完的答案,映射到最终的输出上,可能是标签,也可能直接就是对应的句子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值