多模态大模型训练数据与资源总结

简介

总结对比QWenVL、Vary、InternVL-V-1.5三个多模态大模型的预训练阶段与Finetune阶段对于数据量与训练资源的需求。目标是借此了解多模态大模型在训练过程中需要的数据类型数据量级以及训练资源

数据分布

多模型大模型的训练通常包含预训练和Finetune两个阶段:

  1. 预训练结果使用大批量、弱标签的数据来增强模型的通用能力
  2. Finetune阶段采用数量较少、高质量的数据来提升模型在特定任务中的能力
模型 参数量 训练数据(预训练阶段 训练数据(Finetune阶段 训练资源(全参数预训练最低要求)
QWenVL 7B 公开数据集+私有数据集; 1.4B (Pre-training, weakly labeled image-text pairs.); 76.8M (Multi-task Pre-training, high quality) 私有数据集; 350K instruction tuning data. 2*A100(预估)
InternVL-V-1.5 25.5B 公开数据集; 200M image-text pairs. 公开数据集; 5M image-text pairs. 4*A100
Vary 7B 人工生成数据集; 2.87M (Vary-tiny); 5.1M (Vary-base) 公开数据集; ~124K 2*A100(预估)

QWenVL

预训练

预训练数据分布

1.4B large-scale, weakly labeled, web-crawled set of image-text pairs.

Language Dataset Original Cleaned Remaining%
English LAION-en 2B 280M 14%
LAION-COCO 600M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值