运单号获取用户手机号

探讨通过扫描运单号获取收件人手机号的方法,包括利用菜鸟平台接口、抓包破解和OCR识别等方案,旨在提高快递柜入库效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遇到一个需求,需要通过扫描运单号获取手机人手机号信息,这个功能主要运用于快递柜扫描单号快捷入库,百度了一波,说什么的都有,下面分享一下从百度上分享到的答案:
 

一、有这种接口的,但是一般都是不会公开的。你要就要跟每个公司去谈,除非你公司有足够的能力吧,具体的你可以看菜鸟他的系统我知道是直接扫描的,肯定用的是这种接口

二、这个好像有点儿不现实 以前的时候见快递小哥都是手动输入手机号短信通知,现在都是扫描枪扫描后由短信平台发短信通知,你要是能弄到这个接口也可以实现

三、这个数据要是提供给你调取,那怎么可能呢?快递公司准备着随时被起诉哈哈。

四、看到这个题目好亲切啊,毕设的时候同寝室的分派题目的时候,导师是嵌入式的老师,然后就跟这个基本一模一样,当然是demo环境的,没要求说从订单号获取手机号。被折腾的不行。最后淘宝了

五、其实就是通过快递公司的接口。具体流程是这样的:

    1.用户下单,保留了手机号在你的系统中,同时生成了一个订单号。

    2.快递单分两种,

    一是传统针式打印机打出来的那种4联单,快递单号是印在上面的。出库的时候打印快递单时需要扫描出快              递单号,存下来,然后打印的那个订单与当前存储的运单号匹配,这样关联就有了。

    二是热敏纸运单。这种运单是空白的,上面没有单号。单号是通过快递公司的接口批量获取存在你的数据库里面,打印运单的时候,出栈一个运单号创建成条码打印在运单上,同时直接匹配当前订单。

    3.出库的时候你需要把这个订单号以及收货人信息以及已经匹配的运单号通过接口发送给快递公司。这样快递公司上车扫描的时候就可以确认该运单的确已经被使用。

    4.当货到时扫描运单号,就能做到找到收货人电话——前提是送货员扫码枪应该有对应的连接设备,可以是pos机,也可以是能联网的平板电脑或者手机。

六、这个快递公司都已经在做这个应用了,他们更进一步,直接拨打电话,扫码完,使用专线拨打。。这样就可以隐藏收件人的手机号了,保护客户隐私。。。而且也可以防骚扰电话

七、快递鸟API接口与日日顺乐家智能快递柜好像有个类似的解决方案,电商平台可以通过快递鸟接口把件直接下到柜子里,快递员把件放到柜子里不用输入手机号通过扫描快递单号就能发短信给用户来取件进而提高效率,快递员打开柜子把货放进去、用户打开柜子拿走货的状态回传给快递公司的物流轨迹中展示。

八、我们这边快递派件都是快递员用手机App,扫描一个,然后念手机号,会自动发信息。 

九、发现我们这一个快递员在用一个叫快递员助手的软件来扫描快递单号获取手机号码,虽然手机号是 1xxx 这样打码字符,但是短信是能够发到正确号码上的。我不能理解的是快递条码不是不包含手机号码信息吗,那如何通过扫码获取手机号码的?据说菜鸟物流可以通过淘宝信息来获取订单和快递绑定进而获取手机号,不过这 app 貌似是小公司做的,所以不知道这是怎么实现的。

十、淘宝有开放第三方公开接口供调用。

十一、采用OCR识别
....

      我是来解决问题的,告诉我这一大堆,结果都是一群没做过的在讨论,这尼玛不是坑爹么,于是乎,我就循着这些不靠谱的答案去一个个的尝试,进开放平台搜接口、下APP,结果没有一个靠谱的。

      这里列举三种方案可供参考:

      方案一:打通淘宝菜鸟平台:

      https://open.taobao.com/api.htm?spm=a219a.7386797.0.0.329e669amp7No4&source=search&docId=27758&docType=2

      找到本接口对应负责人,获取key等信息,通过本接口打通菜鸟平台,拿到淘宝对应的收件人信息,不过听说因菜鸟着重推出隐私面单,本接口正在逐渐缩放,各位有门道的兄弟如能打通,劳烦也告知一下鄙人,不胜感激。

      方案二:抓包:

      可以找找诸如蜂巢等可扫码获取手机号的apk,使用Fidders等工具抓包破解。

      方案三:OCR识别:

      参考本人博客:android/c++ opencv 攻坚

本博客就介绍到这里了,有技术方面相应交流,欢迎e我:962742948@qq.com!!

### 大模型原理入门教程 #### 一、理解大模型的概念和发展背景 大模型是指参数量巨大、能够处理复杂任务的人工智能模型,尤其指那些基于深度学习框架构建的大规模预训练模型。这类模型通过海量数据的学习,在自然语言处理等领域取得了显著成就[^1]。 #### 二、探索典型架构及其特点 目前主流的大模型主要分为两类:一类是以Transformer为基础的自注意力机制模型;另一类则是卷积神经网络(CNN)衍生而来的产品。其中最著名的当属Google提出的BERT和OpenAI开发的一系列GPT版本。这些模型利用多层编码器/解码器结构来捕捉文本中的长期依赖关系,并采用大规模无监督预训练加下游任务微调的方提升性能表现。 #### 三、掌握关键技术细节 为了更好地理解和应用大模型技术,还需要熟悉以下几个方面: - **损失函数的选择**:不同的优化目标决定了最终输出的质量差异; - **正则化方法的应用**:防止过拟合现象发生的同时保持良好的泛化能力; - **硬件加速的支持**:GPU/FPGA等专用计算设备对于加快训练速度至关重要; - **分布系统的搭建**:面对超大数据集时如何高效并行运算成为关键挑战之一[^2]。 #### 四、实践操作指南 理论知识固然重要,但实际动手实验更能加深印象。可以从简单的例子入手尝试复现官方给出的小型版预训练权重文件,逐步过渡到更复杂的项目中去。此外,参开源社区贡献代码也是一种不错的选择,既能锻炼技能又能结识志同道合的朋友共同进步[^3]。 ```python import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) print(output.last_hidden_state) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值