钢表面缺陷识别

钢表面缺陷识别是指通过计算机视觉技术对钢材表面缺陷进行检测和分类的过程。这一技术在钢铁制造行业具有重要的工业价值,旨在提高产品质量、降低生产损失以及提升生产效率。钢表面缺陷可能包括裂纹、凹坑、气泡等,这些瑕疵会影响产品的性能和安全性,因此及时准确地识别缺陷至关重要。

在传统的缺陷识别中,手工检测不仅耗时耗力,而且容易受到人为因素的影响。随着机器学习和深度学习技术的发展,计算机视觉已成为一种有效的替代方案。然而,训练稳健的缺陷识别网络面临的主要挑战是数据不足,尤其是缺陷样本稀缺。这限制了模型的训练效果,导致识别准确率不高。

为了解决这一问题,现有的方法采用生成模型来扩大数据集,通过合成缺陷图像来增强训练样本。然而,由于缺陷图像的样本数量依然不足,生成的图像质量常常受到限制,这影响了模型的实际应用效果。

为此,本文提出了一种名为稳定表面缺陷生成(StableSDG)的方法。该方法利用稳定扩散模型中的广泛生成分布来生成高质量的钢表面缺陷图像。为了应对钢表面图像与扩散模型生成图像之间的分布差异,StableSDG提出了两个关键过程。首先,通过调整扩散模型的参数来实现分布对齐,以确保生成图像与实际钢表面图像的相似性。其次,在生成过程中采用面向图像的生成策略,而非仅依赖纯高斯噪声,从而提高生成图像的质量和多样性。

通过在钢表面缺陷数据集上进行大量实验,StableSDG展现了在生成高质量样本和训练识别模型方面的显著性能提升。这些成果不仅推动了缺陷识别技术的发展,也为钢铁行业的质量控制提供了强有力的支持,从而确保了生产效率和产品安全。因此,钢表面缺陷识别技术的研究与应用具有重要的经济和社会意义。

论文作者:Yichun Tai,Kun Yang,Tao Peng,Zhenzhen Huang,Zhijiang Zhang

作者单位:Shanghai University

论文链接:http://arxiv.org/abs/2405.01872v1

内容简介:

1)方向:钢表面缺陷识别

2)应用:工业价值巨大的钢表面缺陷识别

3)背景:数据不足是训练稳健缺陷识别网络的主要挑战,现有方法通过生成模型生成样本来扩大数据集,但由于缺陷图像样本不足,生成质量仍受限。

4)方法:本文提出稳定表面缺陷生成(StableSDG)方法,利用稳定扩散模型中嵌入的广泛生成分布进行钢表面缺陷图像生成。为解决钢表面图像与扩散模型生成图像之间的分布差异,提出了两个过程:通过调整扩散模型的参数来对齐分布,同时在生成过程中采用面向图像的生成而非纯高斯噪声

5)结果:在钢表面缺陷数据集上进行了大量实验,展示了在生成高质量样本和训练识别模型方面的最新性能,并且所设计的两个过程对性能至关重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值