化妆风格迁移技术代码分享

化妆风格迁移是一种计算机视觉和图像处理技术,旨在将一种化妆风格从一个人脸图像转移到另一个人脸图像上,而不改变原图的面部表情和身份特征。这种技术的应用广泛,包括娱乐产业、数字化妆效果预览、社交媒体和个性化服务等领域。

在你提到的内容中,使用的技术是内容-风格解耦化妆迁移方法(Content-Style Decoupling Makeup Transfer, 简称 CSD-MT),这是一种全新的方法,其核心在于通过频率分解将面部图像的内容和化妆风格信息分离处理。这里的关键假设是面部图像的低频(LF)部分包含了化妆风格信息,而高频(HF)部分则包含了更多的内容细节。这种方法避免了使用伪地面真相(Pseudo Ground Truths, PGTs)的常规策略,这些PGTs通常是合成生成的,可能不够准确,从而影响最终的迁移质量。

CSD-MT方法的实现还涉及到两种新的损失函数设计,旨在提升化妆风格迁移的性能,使得转移结果在风格和内容的一致性上更优。这不仅有助于提升化妆迁移的精度和自然度,也推动了无监督学习在化妆风格迁移领域的应用。

化妆风格迁移技术的研究和应用,可以使用户在虚拟环境中预览不同的化妆效果,提供更个性化的美容服务,同时也为人工智能在艺术和娱乐领域的应用开辟了新的可能性。

论文作者:Zhaoyang Sun,Shengwu Xiong,Yaxiong Chen,Yi Rong

作者单位:Wuhan University of Technology;Wuhan Huaxia Institute of Technology;Shanghai AI Laboratory;Qiongtai Normal University

论文链接:http://arxiv.org/abs/2405.17240v1

项目链接:https://github.com/Snowfallingplum/CSD-MT

内容简介:

1)方向:化妆风格迁移

2)应用:化妆风格迁移

3)背景:化妆迁移任务面临的主要问题之一是缺乏真实目标来指导模型训练。大多数现有方法通过合成伪地面真相(PGTs)来解决这个问题,但生成的PGTs往往不够精确,导致性能下降。

4)方法:本文提出一种新的内容-风格解耦化妆迁移方法(CSD-MT),采用完全无监督的方式,避免了生成PGTs带来的负面影响。基于频率特征分析,假设面部图像的低频(LF)成分与其化妆风格信息相关,而高频(HF)成分与其内容细节相关。通过频率分解,CSD-MT能够解耦每张面部图像中的内容和化妆风格信息。随后,CSD-MT通过最大化转移结果与输入图像在这两种信息上的一致性来实现化妆迁移。此外,设计了两种新的损失函数,以进一步提高迁移性能。

5)结果:广泛的定量和定性分析显示了CSD-MT方法的有效性。代码:https://github.com/Snowfallingplum/CSD-MT

### 使用深度学习实现妆容迁移技术概述 妆容迁移是指将一张带有特定妆容的人脸图像中的妆效转移到另一张未化妆的人脸上,使得后者呈现出相似的化妆效果。近年来,随着生成对抗网络(GANs)的发展,这一领域取得了显著进展[^4]。 #### PSGAN架构详解 PSGAN作为一种先进的姿态稳健可感知空间的生成对抗网络,在解决不同角度和表情下的人脸妆容转换方面表现出色。该模型由三个核心组件构成: - **妆容提炼网络(MDNet)**:负责提取并编码来自参考图片的关键特征向量。 - **注意式妆容变形(AMM)模块**:用于调整源图与目标图之间可能存在的几何差异,确保两者能够精准匹配。 - **卸妆-化妆网络(DRNet)**:最终完成从原始状态到施加指定风格后的转变过程。 通过这三个部分协同工作,PSGAN不仅能在标准条件下取得优异成绩,而且对于复杂场景同样具有良好的适应性和鲁棒性。 ```python import paddle from PaddleGAN import models, datasets # 加载预训练好的PSGAN模型权重文件路径 model_path = 'path_to_pretrained_psgan_weights' # 初始化PSGAN实例化对象 psgan_model = models.PSGAN() # 载入已保存的最佳参数配置 state_dict = paddle.load(model_path) psgan_model.set_state_dict(state_dict) def apply_makeup(source_image, reference_image): """ 应用给定参考照片上的化妆品外观至输入的脸部图像 参数: source_image (str): 待处理的目标面部图像路径. reference_image (str): 提供化妆样式的样本图像路径. 返回值: result_image (numpy.ndarray): 经过修饰后的新版本图像数组形式表示. """ # 准备测试数据集加载器 test_loader = datasets.TestDataset([source_image], [reference_image]) with paddle.no_grad(): for batch_idx, data in enumerate(test_loader): src_imgs, ref_imgs = data['src_img'], data['ref_img'] # 执行前向传播计算得到预测结果 outputs = psgan_model(src_imgs, ref_imgs) # 将输出tensor转化为可视化的图像格式 result_image = transforms.ToPILImage()(outputs.squeeze(0).cpu()) return np.array(result_image) ``` 此代码片段展示了如何利用Python编程语言配合PaddlePaddle框架下的PaddleGAN库来调用预先训练完毕的PSGAN模型执行具体的妆容传输任务。需要注意的是实际部署时还需考虑更多细节优化以及环境搭建等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值