跨模态检索

跨模态检索是指在不同类型的数据(如图像和文本)之间进行查询和检索的过程。这种技术通过将不同模态的数据映射到一个共享的特征空间中,从而使得可以通过一种模态的查询来检索另一种模态的数据。实现这种检索的关键技术是哈希技术,它将数据映射到紧凑的二进制码中,这样可以提高检索的效率和存储的经济性。

具体而言,跨模态检索可以利用以下技术:

  1. 哈希技术:将数据转换为固定长度的二进制码,减少存储和计算开销。常见的哈希方法包括局部敏感哈希(LSH)和量化技术。

  2. 知识蒸馏:在本文中,跨模态量化蒸馏(DCMQ)方法通过知识蒸馏的方式,将更丰富的语义信息从一个强大的模型(如VLP)转移到一个更紧凑的哈希模型中,从而改进哈希表示的学习效果。

  3. 配对一致性的归一化(NPC):这种方法用于提高蒸馏过程中模型的判别能力,确保生成的哈希码在不同模态间保持一致性。

  4. 带有Gumbel的乘积量化(PQG):一种新的量化方法,旨在平衡码书学习,提升检索性能。

这种技术的意义在于,它能够实现高效的跨模态信息检索,使得用户可以用一种模态(如文本)来搜索另一种模态(如图像),从而提高了信息检索的灵活性和准确性。这在实际应用中,比如图像搜索引擎和多媒体检索系统中,具有广泛的应用潜力。

论文作者:Young Kyun Jang,Donghyun Kim,Ser-nam Lim

作者单位:Meta AI;Korea University;University of Central Florida

论文链接:http://arxiv.org/abs/2405.14726v1

内容简介:

1)方向:跨模态检索

2)应用:图像-文本跨模态搜索(image-text cross-modal search)

3)背景:学习哈希技术是一种有效的检索解决方案,通过将数据映射到紧凑的二进制编码空间中,实现了高效的检索和存储,目前已在图像搜索、视频检索、文本检索等领域得到广泛应用。

4)方法:本文引入了=一种名为跨模态量化蒸馏(Distillation for Cross-Modal Quantization,DCMQ)的新方法,利用VLP模型的丰富语义知识来改进哈希表示学习。具体来说,将VLP作为“教师”,将知识蒸馏到配备码书的“学生”哈希模型中。这个过程涉及用VLP的丰富语义取代由多热向量组成且缺乏语义的监督标签。最后,应用一种称为带有配对一致性的归一化(Normalization with Paired Consistency,NPC)的转换,实现蒸馏的判别性目标。此外,引入了一种新的量化方法,带有Gumbel的乘积量化(Product Quantization with Gumbel,PQG),促进平衡的码书学习,从而提高检索性能。

5)结果:广泛的基准测试表明,DCMQ始终优于现有的监督跨模态哈希方法,展示了其显著的潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值