无人机跟踪

无人机跟踪通常指的是无人机(UAV)利用视觉或其他传感器实时识别并跟踪特定目标的技术。在文中提到的背景下,主要涉及的是视觉目标跟踪,即通过摄像头捕捉的图像来实时监控和跟踪移动对象。

无人机跟踪技术主要基于以下几点:

  1. 视觉传感器:无人机上的摄像头捕捉实时图像,这是最基本的硬件需求。

  2. 表示学习框架:如文中提到的PRL-Track,这种框架通过机器学习算法来识别和追踪目标。PRL-Track具体使用了渐进式表示学习方法,包括两个阶段:

    • 粗糙表示学习:利用外观和语义信息来调整目标表示,减少外观上的干扰,例如变化的光照或者部分遮挡。
    • 精细表示学习:通过分层模型进一步细化目标表示,使得无人机能够在更复杂的环境中准确跟踪目标。
  3. 算法优化:为了在实际应用中达到高效的跟踪性能,如每秒42.6帧,通常需要对跟踪算法进行特别优化,使其能够快速处理图像数据并做出准确的跟踪判断。

无人机跟踪的应用意义广泛,包括:

  • 军事与安全:用于边界巡逻、重要区域的监视,提高安全防护水平。
  • 救援行动:在灾害现场,无人机可以迅速定位受害者,指导救援队伍。
  • 农业监控:监测作物生长状况和害虫情况,帮助农民制定更有效的农作策略。
  • 环境监控:跟踪野生动物,监测环境变化,为生态保护提供科学依据。
  • 娱乐和媒体:在体育赛事或大型活动中,无人机可以跟踪运动员或特定目标,为观众提供独特的视角。

这种技术的发展推动了无人机应用的多样性和智能化水平,大幅提升了操作效率和应用场景的广度。

论文作者:Changhong Fu,Xiang Lei,Haobo Zuo,Liangliang Yao,Guangze Zheng,Jia Pan

作者单位:Tongji University; University of Hong Kong

论文链接:http://arxiv.org/abs/2409.16652v1

项目链接:https://github.com/vision4robotics/PRL-Track

内容简介:

1)方向:视觉目标跟踪

2)应用:无人机(UAV)自主应用

3)背景:在复杂动态环境中,学习稳健的目标表示对于UAV跟踪尤为具有挑战性,尤其是在面临长宽比变化和遮挡时。

4)方法:本文提出了一种新颖的渐进式表示学习框架PRL-Track,包括粗糙表示学习和精细表示学习两个阶段。粗糙表示学习中设计了两个创新的调节器,依赖外观和语义信息,以减轻外观干扰和捕获语义信息;精细表示学习中开发了一种新的分层建模生成器,以交织粗糙目标表示。

5)结果:大量实验证明,PRL-Track在三个权威的UAV跟踪基准上表现出色。实际测试表明,配备边缘智能摄像头的典型UAV平台上,PRL-Track实现了每秒42.6帧的优越跟踪性能。代码、模型和演示视频:https://github.com/vision4robotics/PRL-Track

### 无人机跟踪系统中的坐标系转换 在无人机跟踪系统中,坐标系之间的转换对于准确定位和追踪目标至关重要。通常涉及的坐标系包括但不限于:世界坐标系、相机坐标系、图像像素坐标系以及地理信息系统(GIS)所使用的经纬度高度(LLA)坐标系。 #### 坐标系定义 - **LLA (Latitude Longitude Altitude)**: 地理位置的标准表示方式,即纬度、经度和海拔高度。 - **ECEF (Earth-Centered Earth-Fixed)**: 是一种三维笛卡尔坐标系,原点位于地球质心,X轴指向本初子午线与赤道交点,Z轴沿地球自转轴正向。 - **Camera Coordinate System**: 对于安装有摄像头设备而言,其自身的局部坐标体系用于描述相对于摄像机光心的位置关系。 - **Pixel Coordinates**: 图像平面上各点对应的二维索引值(x,y),由传感器捕捉到的信息映射而成[^1]。 #### 转换过程概述 当涉及到从视频流获取的目标物体定位时,首先需要将检测框中心点从像素坐标变换至相机坐标系下;接着再进一步投影回真实世界的地理位置上。这一系列操作依赖于内外参矩阵参数校准结果来完成几何透视变化计算: 1. 使用已知的内参矩阵K和平移旋转矢量[rvec|tvec]可以实现从像素坐标(u,v)到相机坐标(Xc,Yc,Zc)间的相互转变; 2. 接着利用四元数或者欧拉角表达的姿态信息把上述得到的空间直角坐标映射成全球统一标准下的大地测量学参照框架内的数值形式——也就是常说的地心地固(ECEF)坐标; 3. 最终借助特定地区的椭球体模型(如WGS84),可求解出最终所需的地理坐标(lat,lon,h)。 ```matlab % 将像素坐标转换为相机坐标 function [xc, yc, zc] = pixel_to_camera_coords(K, rvec, tvec, u, v) % K is the camera intrinsic matrix % rvec and tvec are rotation vector and translation vector from solvePnP or similar function R = rodrigues(rvec); % Convert Rodrigues to Rotation Matrix inv_K = inv(K); uv_ones = [u; v; ones(size(u))]; xyz_c = R' * ((inv_K * uv_ones) - tvec); end ``` 为了提升坐标转换精度,在实践中往往还需要考虑大气折射效应等因素的影响,并采取适当的方法加以修正。此外,采用高阶椭球模型也是改善准确性的有效途径之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值