前置:下载最新版本darknet并编译,编译opencv
一、数据准备
在darknet-master下建立自己的数据twodata,将自己的数据弄成这种形式:
图片放JPRGImages,xml放Annotations,ImageSets是空文件夹。


其中makeTxt.py
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = './VOC2008/Annotations'
txtsavepath = './VOC2008/ImageSets'
total_xml = os.listdir(xmlfilepath)
nu

本文提供了一个在darknet框架下利用yolov4训练自己数据集的快速教程。首先介绍了数据准备步骤,包括创建数据结构,使用makeTxt.py和voc_label.py脚本处理数据。接着详细说明了如何修改yolov4.cfg的参数,如classes数量,filters值和max_batches等,以及coco.data和coco.names文件以适应自定义类别。此外,还给出了调参的一般规则,如训练次数和学习率调整。
订阅专栏 解锁全文
548

被折叠的 条评论
为什么被折叠?



