参考:《数学家的逻辑》
命题逻辑中包含了对字符串的一系列操作,命题逻辑的完备性是指在逻辑语义上任意重言式(即定理)一定可以被字符串的操作表示出来。
定义
-
字符集: { ¬ , → , ( , ) , p 1 , p 2 , p 3 , ⋯ } \{\neg,\rightarrow,(,),p_1,p_2,p_3,\cdots\} { ¬,→,(,),p1,p2,p3,⋯}
- 字符集是无穷集
-
w f . ( well-formed formula ) wf.(\text{well-formed formula}) wf.(well-formed formula)集合:所有合法字符串集。合法的字符串满足如下性质:
- ∀ i , p i ∈ w f . \forall i,p_i \in wf. ∀i,pi∈wf.
- ∀ A , B \forall A,B ∀A,B, ( ¬ A ) ∈ w f . , ( A → B ) ∈ w f . (\neg A) \in wf.,(A\rightarrow B) \in wf. (¬A)∈wf.,(A→B)∈wf.
- 所有的 w f . wf. wf.均由1. 2.两条性质产生。
-
公理模式:
- ( L 1 ) (L_1) (L1) ( A → ( B → A ) ) (A\rightarrow (B\rightarrow A)) (A→(B→A))
- ( L 2 ) (L_2) (L2) ( ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) ) ((A \rightarrow(B \rightarrow C))\rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))) ((A→(B→C))→((A→B)→(A→C)))
- ( L 3 ) (L_3) (L3) ( ( ( ¬ A ) → ( ¬ B ) ) → ( B → A ) ) (((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A)) (((¬A)→(¬B))→(B→A))
- 上述三条为公理模式,带入任意 w f . wf. wf.中字符串形成一条公理,因此公理有无数条。不妨将所有公理构成的集合记为 S 0 S_0 S0。
-
演绎规则:若 A , ( A → B ) A ,(A\rightarrow B) A,(A→B),则 B B B.
- 上面四条定义构成了形式系统 L L L, S 0 S_0 S0是该形式系统内的公理集合。
-
证明:一个 w f . wf. wf.中序列: A 1 , A 2 , ⋯ , A n A_1,A_2,\cdots,A_n A1,A2,⋯,An。满足如下条件:
- 有限长。
- ∀ i , A i ∈ S 0 \forall i, A_i \in S_0 ∀i,