命题逻辑完备性定理证明

本文详细探讨了命题逻辑的完备性定理,包括定义、公理模式、演绎规则以及完备性证明的过程。通过引入重言式、赋值和推导规则,证明了在命题逻辑中,任何重言式都能通过形式系统的演绎得出,揭示了命题逻辑的内在一致性与表达能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:《数学家的逻辑》

命题逻辑中包含了对字符串的一系列操作,命题逻辑的完备性是指在逻辑语义上任意重言式(即定理)一定可以被字符串的操作表示出来。

定义

  1. 字符集: { ¬ , → , ( , ) , p 1 , p 2 , p 3 , ⋯   } \{\neg,\rightarrow,(,),p_1,p_2,p_3,\cdots\} { ¬,,(,),p1,p2,p3,}

    1. 字符集是无穷集
  2. w f . ( well-formed formula ) wf.(\text{well-formed formula}) wf.(well-formed formula)集合:所有合法字符串集。合法的字符串满足如下性质:

    1. ∀ i , p i ∈ w f . \forall i,p_i \in wf. i,piwf.
    2. ∀ A , B \forall A,B A,B ( ¬ A ) ∈ w f . , ( A → B ) ∈ w f . (\neg A) \in wf.,(A\rightarrow B) \in wf. (¬A)wf.,(AB)wf.
    3. 所有的 w f . wf. wf.均由1. 2.两条性质产生。
  3. 公理模式:

    1. ( L 1 ) (L_1) (L1) ( A → ( B → A ) ) (A\rightarrow (B\rightarrow A)) (A(BA))
    2. ( L 2 ) (L_2) (L2) ( ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) ) ((A \rightarrow(B \rightarrow C))\rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))) ((A(BC))((AB)(AC)))
    3. ( L 3 ) (L_3) (L3) ( ( ( ¬ A ) → ( ¬ B ) ) → ( B → A ) ) (((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A)) (((¬A)(¬B))(BA))
    4. 上述三条为公理模式,带入任意 w f . wf. wf.中字符串形成一条公理,因此公理有无数条。不妨将所有公理构成的集合记为 S 0 S_0 S0
  4. 演绎规则:若 A , ( A → B ) A ,(A\rightarrow B) A,(AB),则 B B B.

    1. 上面四条定义构成了形式系统 L L L S 0 S_0 S0是该形式系统内的公理集合。
  5. 证明:一个 w f . wf. wf.中序列: A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An。满足如下条件:

    1. 有限长。
    2. ∀ i , A i ∈ S 0 \forall i, A_i \in S_0 i,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值