Semi- Supervised learning (SSL)半监督学习常用的算法

写在前面的话:持续更新

机器学习一般分为三种:全监督学习, 半监督学习和无监督学习。其主要区别在于训练集的数据是否有标签(label). 如果训练集的所有数据都有标签则称为全监督学习; 如果训练集的部分数据有标签,部分数据咩有标签则称之为半监督学习;如果训练集的数据全部都没有标签则称之为无监督学习。目前图像分割能发出顶会的基本都是半监督学习,所以本文主要来探讨几种半监督学习的方法。

1.Pseudo label(伪标签)

这个算法比较简单,请看下图。简而言之就是:1.先选用有标签的数据去训练模型 2.然后再拿训练的好的模型去预测没有标签的数据,预测得到的标签即为伪标签 3.用伪标签数据和之前的有标签的数据一起再训练模型,得到的模型则为最终模型。

 

2.Consistany Training

 

参考文献:

【机器学习】伪标签(Pseudo-Labelling)的介绍:一种半监督机器学习技术:https://cloud.tencent.com/developer/article/1050723

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MacalDan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值