无人机集群(Drone Swarm)作为新兴的研究热点,越来越多地出现在物流、救援、军事侦察等领域。然而,要让多架无人机在复杂环境中进行协同飞行和路径规划,并不如想象中的简单。如何在有限的计算资源与不确定的外界干扰下,快速得到一套具备较优解的群体协作策略?博弈论可以为我们提供不少启示。本篇博客将给大家展示一份采用 OpenAI Gym 环境、集成 博弈策略、支持 命令行配置、CSV 日志记录、动画可视化 等功能的无人机集群协同路径规划仿真代码,并详细讲解设计思路和使用方法。
一、项目简介
在本项目中,我们搭建了一个基于 Python 的 无人机集群仿真环境,能够模拟:
- 多架无人机在三维空间中移动
- 障碍物对飞行路径的影响
- 随机风暴与电磁干扰对动作的扰动
- 多架无人机分别具有自己的目标点,每当靠近目标后就会被分配新的目标
此外,还可以根据需求切换不同的决策策略,如:
- Nash 决策(纳什均衡的启发式选择)
- Random 决策(简单的随机动作,便于对比效果)
为了方便对比和记录,我们支持:
- CSV 文件输出仿真结果(如:平均奖励、回合数、步骤数等)
- Matplotlib 实时绘制 3D 轨迹图和 奖励曲线
- FuncAnimation 生成 MP4 动画展示无人机运动轨迹
简单来说,这是一份“多功能、高可扩展性”的无人机集群博弈仿真项目,实现了从环境定义到策略设计再到可视化输出的完整流程。
二、代码结构概览
该项目的核心代码结构大致可以分为以下五个部分:
-
环境定义
DroneSwarmEnv
- 继承了 <