基于 YOLOv8 的瓷砖缺陷检测:从数据准备到模型部署的全流程实战

引言

瓷砖缺陷检测是工业质检领域的一个重要应用场景。传统的人工检测方法效率低、成本高,且容易受主观因素影响。随着深度学习技术的发展,基于计算机视觉的自动缺陷检测方法逐渐成为主流。本文将详细介绍如何使用 YOLOv8 实现瓷砖缺陷检测,涵盖数据准备、模型训练、子集生成、模型推理等完整流程。


技术栈

  • YOLOv8:Ultralytics 提供的最新 YOLO 版本,具有更高的检测精度和更快的推理速度。

  • OpenCV:用于图像处理和可视化。

  • PyYAML:用于处理 YAML 格式的配置文件。

  • Python:核心编程语言,用于实现数据处理和模型训练。


项目概述

本项目的目标是训练一个 YOLOv8 模型,用于检测瓷砖表面的缺陷(如裂纹、划痕、色差等)。项目分为以下几个步骤:

  1. 数据准备:整理瓷砖缺陷数据集,生成 YOLO 格式的标注文件。

  2. 子集生成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值