LLM(大语言模型)常用评测指标之F1-Score

F1-Score是精确度和召回率的调和平均值,用于衡量分类模型在数据不平衡情况下的性能。它在医学、欺诈检测和文本分类等领域广泛应用。通过计算如二分类模型的示例,F1-Score提供了对模型预测能力的全面评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

F1-Score

F1-Score 是一种常用于评估分类模型性能的指标,特别是在数据不平衡的情况下。它是精确度 (Precision) 和召回率 (Recall) 的调和平均值,用于衡量模型对正类的预测能力。

计算方法

  1. 精确度 (Precision):是指正确预测为正类的数量与所有预测为正类的数量之比。它反映了模型预测正类的准确性。
    P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP + FP} Precision=TP+FPTP

    其中,TP (True Positives) 是真正类的数量,FP (False Positives) 是假正类的数量。

  2. 召回率 (Recall):是指正确预测为正类的数量与实际正类的数量之比。它反映了模型找出正类的能力。
    R e c a l l = T P T P + F N Recall = \frac{TP}{TP + FN} Recall=TP+FNTP

    其中,FN (False Negatives) 是假负类的数量。

  3. F1-Score:是精确度和召回率的调和平均值,用于平衡精确度和召回率。
    F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} F1=2×Precision+RecallPrecision×Recall

应用场景

F1-Score 通常用于评估分类模型,尤其是在正负类样本不平衡的情况下。它帮助衡量模型对少数类的预测能力,因此在医学诊断、欺诈检测、文本分类等领域被广泛使用。

示例

假设一个二分类模型的混淆矩阵如下:

预测正类预测负类
实际正类TP = 80FN = 20
实际负类FP = 30TN = 70
  • 精确度 (Precision) = 80 / (80 + 30) = 0.727
  • 召回率 (Recall) = 80 / (80 + 20) = 0.8
  • F1-Score = 2 * (0.727 * 0.8) / (0.727 + 0.8) = 0.761

因此,该模型的 F1-Score 为 0.761,反映了模型在平衡精确度和召回率方面的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值