GNSS/INS组合导航(1)-- 姿态矩阵

 对于开始接触惯性导航的人来说,姿态矩阵是必经之路。我在开始学习惯导的过程中,只是用姿态矩阵,但没具体去研究其对应欧拉角旋转方式,最近把自己绕晕了,所以推导完后记录一下自己对欧拉角与旋转矩阵理解,重点针对自己以往忽视的地方,防止再次遗忘,所以全文可能不会很通顺。在讲姿态矩阵之前,需要先了解一下姿态的基础知识。常用的姿态表示有三种形式:欧拉角、旋转矩阵、四元数,下图来自百度百科,分别表示了飞机的横滚角、俯仰角与偏航角,这就是欧拉角所表示的姿态,将三个欧拉角按照一定的顺序旋转,就可以将一个坐标系下的坐标变换到对应的另一个坐标系下。但是,欧拉角存在万向节死锁问题(详见欧拉角万向节死锁 - 知乎),所以,很多时候会用三维旋转矩阵或者四元数来代替欧拉角进行计算,这也意味着它们之间是可以相互转换的。

        

欧拉角是由Leonhard Euler 提出的概念,用来描述刚体/移动坐标系在一个固定坐标系中的姿态.简单的说是使用XYZ三个轴的旋转分量,来描述一个6自由度的旋转。

欧拉角一般具有两大类表示方式,每类按照旋转次序的不同分为6小类:

Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y)

Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z).

每个大类都使用了3个变量描述三次旋转过程中的旋转角度,差别在于Proper Euler angles只涉及两个转轴,而Tait–Bryan angles涉及三个转轴。一般在导航中用的的是Tait–Bryan angles,这种旋转方式对应的三个轴的转角也就是我们上文所提及的姿态角:横滚角、俯仰角与偏航角。

除了旋转顺序,欧拉角的旋转还需要注意的是旋转方式,即内旋和外旋。如下图所示,两行都是按照Z-Y顺序旋转,不同的是上面一行的第二次旋转是按照旋转之后的Y轴旋转,而下面一行是按照绕Z轴旋转之前的Y轴进行的旋转,所以,上面一行的旋转被称为内旋(按照坐标系自己的轴向旋转),而下面则被称为外旋(按照参考坐标系的轴向旋转)。

这样,按照旋转角,旋转顺序,旋转方式便能确定一组欧拉角的旋转。

关于旋转角与旋转矩阵的对应关系,需要注意的是坐标旋转和坐标系旋转的区别,两个矩阵互为转置,一定要搞明白坐标旋转与坐标系旋转的区别_https://github.com/heatMa-CSDN博客_坐标旋转写的比较清楚,这里直接给出二维坐标系的旋转矩阵:

C_a^b=\begin{bmatrix} cos(\theta) & sin(\theta)\\ -sin(\theta)&cos(\theta) \end{bmatrix}

该矩阵表示坐标系a顺时针旋转\theta得到坐标系b。将之拓展至三维坐标系下,可以得到对于右手坐标系的三维旋转矩阵:

(1)绕X轴顺时针旋转\gamma

C_1=\begin{bmatrix} 1&0 &0 \\ 0&cos(\gamma) &sin(\gamma) \\ 0&-sin(\gamma) &cos(\gamma) \end{bmatrix}

(2)绕Y轴顺时针旋转\theta

C_2=\begin{bmatrix} cos(\theta) &0 &-sin(\theta) \\ 0& 1& 0\\ sin(\theta) & 0 &cos(\theta) \end{bmatrix}

(3)绕Z轴顺时针旋转\psi

 C_3=\begin{bmatrix} cos(\psi) & sin(\psi) &0 \\ -sin(\psi) & cos(\psi) &0 \\ 0& 0 &1 \end{bmatrix}

上述旋转矩阵中,同样是顺时针旋转,Y轴的旋转矩阵与X、Z轴不同,有兴趣的读者可以自己旋转一下,看看为什么不同。将三个旋转矩阵按照Z-Y-X的顺序进行连乘,就可以得到三维坐标系的最终旋转矩阵:

C=C_1C_2C_3

在惯性导航中,姿态角就是n系旋转到b系的角度。按照上文求取旋转矩阵的方法,现有姿态角\gamma\theta\psi,将n系按照Z-Y-X轴旋转顺序,内旋 \psi\theta\gamma,即可得到n系到b系的旋转矩阵C_{n}^{b}。该矩阵即惯性导航中定义的姿态矩阵,该矩阵对应姿态角( \gamma\theta\psi )(有些学者会将该矩阵的转置矩阵C_{b}^{n}记作姿态矩阵)。 已知n系下的姿态角,b系到n系的旋转则是按照X-Y-Z轴分别旋转(-\gamma,-\theta,-\psi)。

 在载体运动过程中,b系固联于载体,所以b系是不断变化的,而n系是不变的,所以,通过矩阵C_{b}^{n}就可以惯导测得的b系下运动变化量转换到n系下,从而得到导航所需要的n系坐标和速度。

参考:

[1]百度百科-欧拉角

[2]严恭敏. 捷联惯导算法及车载组合导航系统研究[D]. 西北工业大学.

[3]欧拉角细节/旋转顺序/内旋外旋 - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值